• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Emacs Lisp in Edwin SScheme

Birkholz, Matthew 01 September 1993 (has links)
The MIT-Scheme program development environment includes a general-purpose text editor, Edwin, that has an extension language, Edwin Scheme. Edwin is very similar to another general-purpose text editor, GNU Emacs, which also has an extension language, Emacs Lisp. The popularity of GNU Emacs has lead to a large library of tools written in Emacs Lisp. The goal of this thesis is to implement a useful subset of Emacs Lisp in Edwin Scheme. This subset was chosen to be sufficient for simple operation of the GNUS news reading program.
2

Compiler for an Embedded Extension Language on Android

Rasmus, Svensson January 2012 (has links)
Bytecode interpreters are a common implementation strategy for scripting languages. Source code is translated to bytecode to improve time and memory performance. The Android platform includes the Dalvik virtual machine, which typically executes bytecode compiled from Java source code. This thesis describes how this virtual machine can be reused to execute bytecode compiled from a scripting language. A compiler is written for a test bed scripting language and the time and memory performance is evaluated. The Dalvik virtual machine, designed for a statically typed object-oriented language, was flexible enough to successfully host a dynamically typed scripting language that allows for objects to be transported cheaply between scripts and Java code. The compiled code executes one to two orders of magnitude faster than with a naive interpreting implemetation. Numeric performance is lacking in general, though simpler cases are optimized.

Page generated in 0.0836 seconds