• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Failure Mode Identifications Of Rc Beams Externally Strengthened With

O'Riordan-Adjah, Chris 01 January 2004 (has links)
The application of carbon reinforced-fiber polymers (CFRP) to structures is a new development that is still under intense research. However, the rehabilitation or retrofit of damage reinforced concrete members by the external bonding of CFRP is becoming increasingly popular in the construction industry. The objective of the tests presented in this thesis is to study different CFRP designs on the reinforced concrete beams and compare their failure modes. The main goal is to determine the CFRP design on the reinforced concrete beams that result in a progressive and gradual failure mode with enough warning before final failure. Different CFRP designs are investigated and compared with theoretical predictions. A retrofitting concept is also employed in this research. The retrofitting concept is the idea of strengthening cracked structures. The strengthening of the beams performed in the lab is carried out under sustained loads and on previously cracking the beams to simulate the realistic case that is usually faced in practice on the field. The RC beams are strengthened in flexure to double their flexural capacity by applying the adequate amounts of CFRP to the tension face of the beams. Due to the CFRP strengthening and increasing the strength capacity of the beams, different CFRP anchorage methods are employed to the beams for additional shear reinforcement to ensure flexural failure. The different CFRP anchorage methods will also be observed for their effectiveness during the debonding and propagation mechanism as well as evaluated for their progressive failure mode.

Page generated in 0.1371 seconds