• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fabrication and Characteristics of Fiber Grating External Cavity Lasers

Yang, Huei-Min 02 June 2004 (has links)
A new scheme of fabricating the tapered hyperbolic-end fibers (THEFs)microlenses using unique etching and fusion techniques is proposed. TheTHEFs were fabricated by symmetrically tapering the fiber during theetching process and hyperbolically lensing the tip during the fusing process.The tapered hyperbolic microlenses have demonstrated up to 82% couplingefficiency for a laser with an aspect ratio of 1:1.5. The influence of the tapering asymmetry on the coupling has also been investigated experimentally and theoretically. The axially symmetrical taperedmicrolenses of the THEFs showed that far-field profiles were well approximated to a Gaussian profile, while the asymmetric taper had deviated significantly from a Gaussian profile. A theoretical analysis illuminated a larger wavefront transformation of the hemispherical microlenses. A lesser phase aberration of the normalized optical path difference (OPD) was found in the hyperbolic-end lens, and that resulted in more than 2 dB improvement in the coupling efficiency when compared to the currently available hemispherical microlenses. The high-coupling performance of the hyperbolic microlens was due to an improved wavefront matching between the laser and the fiber, which was one of the most important contributions in this study.The 1.55 µm fiber grating external cavity lasers (FGECLs), packaged with THEF microlens for coupling the fiber grating external cavity, have been investigated for different combinations of coupling efficiency (£b) and Bragg reflectivity (Rg). Various tapered hyperbolic-end fiber microlenses with different coupling efficiency have been fabricated for this study. The FGL of higher £b = 72% and Rg = 0.52 has a stronger resonant feedback as the spectral output showed a single longitudinal mode with the side-mode-suppression-ratio (SMSR) greater than 45dB, a high output power of greater than 5mW, and a lower threshold current. However, for the case of £b = 68% and Rg = 0.35, the FGL exhibited a more stable SMSR against the variation of pumping current and temperature. Numerical simulations have also been performed on the SMSR at different coupling efficiencies and Bragg reflectivity for the FGLs. The high performance of the FGLs can be achieved through a higher coupling efficiency between a laser diode and a single-mode fiber. The calculated SMSR showed an excellent agreement with the measured data.
2

DOUBLE TUNING OF A DUAL EXTERNAL CAVITY SEMICONDUCTOR LASER FOR BROAD WAVELENGTH TUNING WITH HIGH SIDE MODE SUPPRESSION

Abu-El-Magd, Ali January 2011 (has links)
<p>Over the past few years various successful miniaturization attempts of External Cavity Semiconductor Lasers (ECSL) were published. They built upon the rich literature of ECSL configurations that were extensively analyzed and improved upon since the 1960s. This was merged with the microfabrication techniques of 3D structures based on MEMS technology. The main drive for miniaturizing such tunable lasers in the recent past was the huge potential for such devices in all optical networks specifically as signal sources that enable Wavelength Division Multiplexing (WDM).<br />This thesis compares the different configurations chosen to build tunable lasers using MOEMS technology. Our criteria of comparison include wavelength tuning range, side mode suppression, tuning speed and device dimensions. Designs based on the simple ECSL with a movable external mirror suffered from the tradeoff between tuning range and Side Mode Suppression SMS. To overcome this limitation most designs adopted grating based tuning using the Littrow or Littman/Metcalf configurations. These configurations allow for much better tuning results but don’t lend themselves easily to miniaturization. The grating based devices were bulky and quite complicated to realize.<br />We propose the adoption of the Zhu/Cassidy double external cavity configuration. It retains the simplicity of the single external mirror configuration along with the tuning range and the SMS of including multiple tuning elements. In its original form this configuration suffered from mode hopping within the tuning range. Thorough simulation, design and experimental evidence is presented in this work to show that by extending the configuration to allow full control over both optical tuning elements this drawback can be eliminated.<br />Our proposed design would reduce the form factor to < 300μm x 200μm x 200μm. The voltage required to tune through all the modes is < 40V and the resonant frequency of the mirror is in the 10s of MHz order of magnitude. When coupled with a multimode laser of a sufficiently broad lasing profile this setup should enable a tuning range > 72nm with a SMS >20dB.</p> / Master of Applied Science (MASc)

Page generated in 0.0712 seconds