• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cooperative self-localization in a multi-robot-no-landmark scenario using fuzzy logic

Sinha, Dhirendra Kumar 17 February 2005 (has links)
In this thesis, we develop a method using fuzzy logic to do cooperative localization. In a group of robots, at a given instant, each robot gives crisp pose estimates for all the other robots. These crisp pose values are converted to fuzzy membership functions based on various physical factors like acceleration of the robot and distance of separation of the two robots. For a given robot, all these fuzzy estimates are taken and fused together using fuzzy fusion techniques to calculate a possibility distribution function of the pose values. Finally, these possibility distributions are defuzzified using fuzzy techniques to find a crisp pose value for each robot. A MATLAB code is written to simulate this fuzzy logic algorithm. A Kalman filter approach is also implemented and then the results are compared qualitatively and quantitatively.
2

Cooperative self-localization in a multi-robot-no-landmark scenario using fuzzy logic

Sinha, Dhirendra Kumar 17 February 2005 (has links)
In this thesis, we develop a method using fuzzy logic to do cooperative localization. In a group of robots, at a given instant, each robot gives crisp pose estimates for all the other robots. These crisp pose values are converted to fuzzy membership functions based on various physical factors like acceleration of the robot and distance of separation of the two robots. For a given robot, all these fuzzy estimates are taken and fused together using fuzzy fusion techniques to calculate a possibility distribution function of the pose values. Finally, these possibility distributions are defuzzified using fuzzy techniques to find a crisp pose value for each robot. A MATLAB code is written to simulate this fuzzy logic algorithm. A Kalman filter approach is also implemented and then the results are compared qualitatively and quantitatively.

Page generated in 0.0592 seconds