• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lake Benthic Algal Production and Extracellular Material

Scott, Caren Elizabeth 13 August 2013 (has links)
Littoral zone primary production is under-studied relative to the pelagic zone, despite recent work indicating its importance to the lake as a whole. Benthic extracellular material, shown to be important for food web dynamics and stabilization of the surrounding ecosystem in the marine intertidal, is even less frequently studied in lakes. I examined the environmental and community level drivers of benthic primary production, and found production to increase over the summer and to decrease with disturbance. I also found that maximum photosynthesis and efficiency under sub-saturating light both increased with depth, contrary to the existing, laboratory-derived paradigm of a trade-off between the two. I also examined how benthic primary production and environmental factors were correlated with the amount of extracellular material. I found that loosely bound colloidal extracellular material decreased with in situ photosynthesis and was affected by algal community composition, whereas tightly bound capsular extracellular material was affected only by date, indicating that capsular material is refractory in lakes just as it is in marine systems. Contrary to what is seen in marine systems, however, there were no direct effects of the environmental factors, possibly the result of physical differences between these systems. I also performed the first cross-ecosystem comparison of extracellular material. Despite relatively few studies from lakes and streams, and methods which have not been standardized, I found that lakes were similar to marine intertidal zones both in their median amounts of extracellular material and their relationships between extracellular material and chlorophyll a. This relationship appeared to be quite different in streams, with very low amounts of extracellular material found at sites with either high or low chlorophyll a concentrations. While the above studies will improve future estimates of lake carbon budgets and whole-lake production, my development of a permutation test for path analysis, and a novel application of the Bayesian principal components analysis, will assist all ecological studies that are often restricted in their sample sizes or compromised by missing data.
2

Lake Benthic Algal Production and Extracellular Material

Scott, Caren Elizabeth 13 August 2013 (has links)
Littoral zone primary production is under-studied relative to the pelagic zone, despite recent work indicating its importance to the lake as a whole. Benthic extracellular material, shown to be important for food web dynamics and stabilization of the surrounding ecosystem in the marine intertidal, is even less frequently studied in lakes. I examined the environmental and community level drivers of benthic primary production, and found production to increase over the summer and to decrease with disturbance. I also found that maximum photosynthesis and efficiency under sub-saturating light both increased with depth, contrary to the existing, laboratory-derived paradigm of a trade-off between the two. I also examined how benthic primary production and environmental factors were correlated with the amount of extracellular material. I found that loosely bound colloidal extracellular material decreased with in situ photosynthesis and was affected by algal community composition, whereas tightly bound capsular extracellular material was affected only by date, indicating that capsular material is refractory in lakes just as it is in marine systems. Contrary to what is seen in marine systems, however, there were no direct effects of the environmental factors, possibly the result of physical differences between these systems. I also performed the first cross-ecosystem comparison of extracellular material. Despite relatively few studies from lakes and streams, and methods which have not been standardized, I found that lakes were similar to marine intertidal zones both in their median amounts of extracellular material and their relationships between extracellular material and chlorophyll a. This relationship appeared to be quite different in streams, with very low amounts of extracellular material found at sites with either high or low chlorophyll a concentrations. While the above studies will improve future estimates of lake carbon budgets and whole-lake production, my development of a permutation test for path analysis, and a novel application of the Bayesian principal components analysis, will assist all ecological studies that are often restricted in their sample sizes or compromised by missing data.
3

Investigation of Chemotaxis Genes and Their Functions in Geobacter Species

Tran, Hoa T. 01 September 2009 (has links)
Geobacter species are δ-Proteobacteria and are often predominant in the Fe(III) reduction zone of sedimentary environments. Their abilities to remediate contaminated environments and to produce electricity have inspired extensive studies. Cell motility, biofilm formation, and type IV pili, which have been shown to be regulated by chemotaxis genes in other bacteria, all appear important for the growth of Geobacter species in changing environments and for electricity production. The genomes of Geobacter species show the presence of a significant number of chemotaxis gene homologs, suggesting important roles for them in the physiology of Geobacter species, although gene functions are not yet identified. In this study, we focus on identifying chemotaxis components and studying their functions in Geobacter species. We identified a large number of homologs of chemotaxis genes, which are arranged in six or more major clusters in the genomes of Geobacter sulfurreducens, Geobacter metallireducens, and Geobacter uraniireducens. Based on homology to known pathways, functions of some chemotaxis clusters were assigned; others appear to be unique to Geobacter species. We discuss the diversity of chemoreceptors and other signaling proteins as well the regulation of chemotaxis genes in Geobacter species. The functions of chemotaxis genes were studied in G. sulfurreducens, whose genome contains ~ 70 chemotaxis gene homologs, arranged in 6 major clusters. These chemotaxis clusters are also found in other Geobacter species with similar gene order and high level of gene identity, suggesting that our study in G. sulfurreducens could be extrapolated to other Geobacter species. We identified the function of the che5 cluster of G. sulfureducens as regulation of the biosynthesis of extracellular materials. We showed that G. sulfurreducens KN400 is chemotactic, and that this behavior is flagellumdependent. Our preliminary data indicated that G. sulfurreducens may use the che1 cluster, which is found exclusively in Geobacteraceae, to regulate chemotaxis. Our studies demonstrated important roles of chemotaxis genes in Geobacter physiology and their presence in large numbers could be one of the reasons why Geobacter species outcompete other species in bioremediation sites. Further studies are warranted for better understanding of the mechanisms of Che-like pathways and their potential use in optimization of conditions for applications of Geobacter species in bioremediation and electricity generation.

Page generated in 0.1 seconds