• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 7
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dissymétrie de rayonnement dans les radiosources extragalactiques

Fraix-Burnet, Didier 08 July 1997 (has links) (PDF)
Quelques centaines de galaxies dans l'Univers présentent des structures extraordinaires, d'une taille parfois gigantesque (jusqu'à plusieurs fois le rayon de la galaxie parente). Ces structures, visibles essentiellement dans le domaine des longueurs d'onde radio, donc appelées radiosources, sont caractérisées dans les deux tiers des cas par des ``jets'' extrêmement bien collimatés. Ils proviennent du noyau de ces galaxies (dites actives) et déversent leur énergie dans des régions diffuses appelées ``lobes''. L'étude des jets extragalactiques a une portée très large puiqu'ils constituent des sondes naturelles à la fois du coeur des galaxies actives et des milieux interstellaire et intergalactique. Ils sont sans aucun doute le signe d'étapes violentes dans l'évolution des galaxies (interaction, coalescence, trous noirs,...).<br /><br />La plus grosse partie de mes recherches s'est attachée à déterminer l'origine du rayonnement dans les jets extragalactiques. J'ai abordé cette étude sous de multiples facettes (observations optiques et radio, modélisation et théorie) parce que je suis convaincu que seule une vision globale de ces objets autorise une approche suffisamment précise de leur physique. Prises individuellement, les différentes composantes des radiosources (lobes, jets, jets VLBI, noyaux actifs,...) ne sont que très peu contraintes par les observations. La dissymétrie (ou unilatéralité) des jets peut être considérée comme le thème fédérateur de mes travaux. Expliquer pourquoi un jet rayonne alors que son opposé n'est pas visible est à mon avis un objectif ultime: lorsque nous l'aurons atteint, nous aurons alors vraiment compris la physique des jets extragalactiques. <br /><br />Ce mémoire s'articule autour de l'idée centrale que les jets sont non-relativistes et qu'une population de particules ultra-relativistes (électrons-positrons) supplémentaires explique le rayonnement synchrotron. C'est à partir d'une synthèse d'observations et de différents travaux théoriques que j'ai construit un modèle expliquant l'unilatéralité des jets à grande échelle. Il reste encore qualitatif, mais il englobe plus généralement les propriétés des radiosources. L'interprétation usuelle de la dissymétrie des jets fait appel uniquement à un effet Doppler relativiste. J'ai pu démontrer au contraire que ces dissymétries sont essentiellement intrinsèques, c'est-à-dire que les propriétés du rayonnement d'un jet dépendent des propriétés locales de son environnement. Toutes mes recherches se situent dans ce cadre et ont pour objectif d'appuyer le modèle par des observations et de le quantifier par des approches théoriques.<br /><br />Un complément indispensable à l'étude des radiosources à grande <br />échelle, est la compréhension de ce qui se passe à plus petite<br />échelle, jusque vers la zone de formation des jets. Une partie de <br />mes travaux en cours a pour objectif d'établir un lien entre les calculs théoriques de la machine infernale centrale et les structures à grandes échelles, par l'intermédiaire d'observations et de modélisations de la région la plus petite observable par des techniques d'interférométrie intercontinentale. Mon espoir est d'aboutir à une modélisation globale et entièrement cohérente à toutes les échelles d'une radiosource extragalactique.
2

Contribution a la calorimetrie du telescope spatial a rayon gamma GLAST et etude des cascades eletron-photon sur le rayonnement diffus extragalactique.

D'Avezac, Pol 27 September 2006 (has links) (PDF)
Le Gamma Large Array Space Telescope (GLAST), d es septembre 2007, observera les rayons entre 100 MeV et 300 GeV. Leur direction est mesurée par un trajectographe en couches à pistes de Si, leur énergie par un calorimètre rendu hodoscopique gr^ ace a la disposition de ses barreaux de CsI(Tl). Pesant près de deux tonnes, une structure en fibres de carbone rigidifiée par de l'époxy les soutient pour les protéger durant l'envol. Dans un barreau, un signal crée par un dépôt d'énergie est attenue en fonction de la distance parcourue. Un système de lecture compose d'une double diode a chaque extrémité permet alors de mesurer l'énergie déposée et sa position moyenne. Sur Terre, la calibration s'effectue grâce aux muons cosmiques. Un rayon interagit en créant une gerbe électromagnétique. Les contraintes spatiales sur la conception du calorimètre font que seule une fraction de l'énergie y aboutit, ce en fonction de l'énergie, l'orientation et la proximité aux parois de la gerbe. L'énergie (E) est reconstruite en optimisant, en fonction de ces paramètres, un estimateur base sur l'énergie mesurée dans le calorimètre (Q) et des observables réduisant la variance de Q car anti corrélées a celle-ci a Exe. L'algorithme de reconstruction procède à un maximum de vraisemblance sur cet estimateur. Les rayons extragalactiques peuvent initier des cascades électron-photon sur le fond de photons. Les spectres observes dépendent de l'atténuation des rayons, permettant en retour une mesure du fond infrarouge, et de l'émission de leurs cascades. Une signature spectrale du champ magnétique extragalactique est alors perceptible.
3

Rayonnement cosmique : révèler la matière noire au-delà des sources astrophysiques / Cosmic radiation : unveiling dark matter components beyond the contribution of astrophysical sources

Di Mauro, Mattia 27 February 2015 (has links)
Les preuves d'une composante de matière invisible dans l'Univers sont présents à de nombreuses échelles. Cette composante, appelée matière noire (MN), à interaction faible, stable sur des temps cosmologiques, non-relativiste et non-baryonique représente environ 28% du budget d' énergie de l'Univers. L' une des principales stratégies pour identifier la MN est la détection indirecte des produits de son annihilation.Les rayons gamma sont très prometteurs. Le télescope spatiale Fermi-LAT (FL) a mesuré un flux diffus isotrope de gamma, nommé IGRB, qui est généralement associé à l'émission de sources non résolues, mais peut aussi contenir une contribution due à la MN. Les sources gamma les plus nombreuses sont les noyaux actifs de galaxies (NAG) divisés en blazars et NAG non-alignés (NAGna) selon l'orientation de leur jet. Nous avons calculé le flux gamma des NAGna à l'aide de la corrélation entre luminosité radio et gamma pour un échantillon de sources détectées dans les deux bandes. Nous avons ainsi démontré que les très nombreux NAGna peuvent contribuer de 10% à 100% du IGRB mesuré par FL.Nous avons étudié les blazars et, pour la première fois, nous avons utilisé les données de FL et des télescopes TeV au sol en synergie pour dériver leur fonction de luminosité et leur distribution spectrale d'énergie. Nous avons démontré que cette population représente environ 10% du IGRB à 100MeV, jusqu'à sa totalité à des énergies plus élevées, expliquant en détail le ramollissement de l'émission IGRB aux énergies supérieures à 100GeV.Les pulsars sont les sources galactiques le plus nombreuses de gamma et radio. Nous avons calculé que leur contribution maximale au IGRB est de 1% et qu' elles contribuent à hauteur de 8% à l' excès au centre galactique. Compte tenu des résultats précédents, nous avons déduit que l'émission des NAG et des galaxies à sursaut de formation d'étoiles peut expliquer très bien et au même temps l'anisotropie et l'intensité du IGRB. Nous avons calculé les limites supérieures à la section efficace d' annihilation de MN, si on rajoute ce mécanisme d'émission aux contributions astrophysiques. Ces limites sont très strictes, autour de la valeur thermique canonique, pour une large gamme de masses de MN. Nous avons également identifié des régions dans l' espace des paramètres masse MN-section efficace d' annihilation peut améliorer l'ajustement aux données.Les flux de positons (e+) et électrons (e-) pourraient eux aussi cacher un signal de MN. La fraction de e+ (FP) devrait diminuer avec l' énergie si le mécanisme principal de production de e+ était secondaire, à savoir dû à l'interaction des rayons cosmiques avec le milieu interstellaire. Cependant AMS-02 mesure une augmentation de la FP aux énergies supérieures à 10 GeV. Nous avons calculé l'émission de e+ et de e- de rémanent de Supernovae, de nébuleuse de vent de pulsars (NVP) et de production secondaire, montrant que les flux leptoniques peuvent être entièrement expliquée par ces émissions astrophysiques et que la hausse de la FP est compatible avec une émission de paires par les NVP.Enfin, nous avons construit une section efficace phénoménologique pour la production secondaire d'antiprotons, en utilisant les données existantes. Nous avons dérivé que l'incertitude sur la production d'antiprotons totale est d' au moins 20%. Ainsi, à moins que les incertitudes soient réduites grâce à de nouvelles mesures, il sera difficile de dévoiler une contribution de MN au flux d' antiprotons au-delà de la production secondaire avec les prochaines données de AMS-02, à moins que le composant de MN soit dominante dans une certaine gamme d'énergie.Les prochaines années seront très excitantes pour la chasse à la MN: de nouvelles mesures gamma et de particules chargées vont atteindre une précision incroyable; un grand effort devrait être fait dans la modélisation de l' émission de ces flux par des sources astrophysiques afin de démêler un signal de MN des inévitables bruits de fonds / Evidences of an invisible matter component in the Universe are present at many scales. This component, called dark matter (DM), is weakly interacting, stable on cosmological scales, non-relativistic, not made of baryonic particles and costitutes about the 28% of the Universe. One of the main strategies to identify DM is the indirect detection of particles produced via DM annihilation. gamma rays are one of the most promising channels. The Fermi-LAT has measured an isotropic gamma-ray backgound (IGRB) which is associated to the emission from unresolved sources, but could also contain an exotic component from DM. The most numerous gamma-ray sources are the Active Galactic Nuclei (AGN) divided in blazars and misaligned AGN (MAGN) according to the orientation of their jet. We have derived the gamma-ray emission from MAGN using the correlation between the radio and gamma-ray luminosities of a sample of detected sources. The unresolved MAGN are very numerous and we have demonstrated that they can account from 10% up to 100% of the IGRB measured by the Fermi-LAT.We have also studied the blazars and, for the first time, we used the Fermi-LAT data and the IACTs measure- ments in synergy to have a better understanding of their spectral energy distribution (SED). Considering these sets of catalogs, we have derived their SED and gamma-ray luminosity function demonstrating that this population accounts for about 10% of the IGRB at 100 MeV up to its totality at higher energies, fully explaining the softening of the IGRB emission at energy larger than 100 GeV.The most numerous Galactic gamma-ray and radio emitting population is the pulsar class. We have calculated that the maximal contribution of pulsars to the IGRB is 1% and that they contribute up to 8% to the putative gamma-ray excess found in the Galactic center.Using the previous results we have derived that the emission from AGN and Star Forming Galax- ies can provide very good fits to the anisotropy and intensity of the Fermi-LAT IGRB. We have also calculated upper limits to the annihilation cross section of DM adding this exotic emission mechanism to the astrophysical source populations. These limits are quite stringent, around the canonical thermal relic value for a wide range of DM masses. We have also identified regions in the DM mass and annihilation cross section parameter space which can significantly improve the fit to data.Positrons and electrons spectra could also hide a DM signal. The positron fraction (PF) is expected to have a decreasing shape if the main mechanism of positron production is ”secondary”, namely due to the interaction of cosmic rays with the interstellar medium. However AMS-02 measured an increased PF at energy larger than 10 GeV. We have calculated the electron and positron emission from Supernovae Remnants, Pulsar Wind Nebulae and secondary production showing that the electron, positron, PF and the inclusive spectra can be fully explained by these astrophysical emissions and that the rising of the PF is consistent with the Pulsar Wind Nebulae emission of positrons.Finally we have built a phenomenological cross section for the secondary production of antiprotons. We have used the most up-to-date data sets and derived that the uncertainty on the total antiproton production is at least 20%. Thus, unless cross section uncertainties will be reduced thanks to new measurements, it will be difficult to unveil a DM contribution to antiprotons above the secondary production with the upcoming AMS-02 antiproton data, unless the DM component is really dominant in some energy range.The next years will be exciting for the hunting of DM. New measurements on gamma-rays and charged parti- cles are going to reach incredible precision and a strong effort should be done in the modeling of the gamma-ray and charged particles emission from galactic and extragalactic sources in order to disentangle a signal of DM above this unavoidable astrophysical background
4

Observatoire Pierre Auger : Analyse des gerbes inclinées, observation de neutrinos d'ultra haute énergie, et signature d'une origine locale pour les rayons cosmiques chargés

Deligny, Olivier 04 April 2003 (has links) (PDF)
L'observatoire Pierre Auger se propose de recueillir une statistique sans précédent concernant le spectre des rayons cosmiques d'ultra haute énergie. Les quelques données actuelles suggèrent une absence de coupure GZK, coupure liée à la distance d'atténuation des protons dans un milieu de propagation tel que le rayonnement fossile à 3K.<br> Après avoir étudié l'effet des champs magnétiques extragalactiques sur la propagation des rayons cosmiques et l'influence sur le spectre, une grande partie du chapitre consacré à la description de l'expérience Auger sera laissée au système d'acquisition des données.<br> L'étude des gerbes atmosphériques initiées dans la haute atmosphère sous incidence rasante est riche d'enseignements concernant la possibilité de détection de neutrinos. Une procédure de reconstruction de l'énergie des gerbes rasantes hadroniques est formalisée et appliquée aux événements du prototype dans le chapitre 4, et le calcul de la sensibilité aux neutrinos du détecteur complet est donné dans le chapitre 5.<br> Enfin, l'analyse des données de l'année 2002 du réseau prototype de l'expérience Auger est l'objet du chapitre 6.
5

Propagation et distribution sur le ciel des rayons cosmiques d'ultra-haute<br />énergie dans le cadre de l'Observatoire Pierre Auger

Armengaud, Éric 09 May 2006 (has links) (PDF)
L'origine des rayons cosmiques d'ultra haute énergie reste une énigme de<br />la physique contemporaine, que l'Observatoire Pierre Auger, détecteur<br />hybride d'une taille inégalée, va tenter de résoudre. L'observation<br />directe des sources de ces particules, ou de structures à grande échelle<br />sur le ciel associées à ces sources, est un des premiers objectifs de<br />cet observatoire. De telles observations permettront aussi de contraindre la<br />propagation des rayons cosmiques, qui, entre leurs sources et la Terre,<br />subissent d'une part des interactions sur des fonds de photons de basse<br />énergie, et d'autre part des déflections dans des champs magnétiques<br />astrophysiques.<br />Cette thèse comprend deux volets, afin d'observer les sources des rayons<br />cosmiques avec l'Observatoire Auger et de les modéliser.<br /><br />Nous commençons par décrire en détail l'Observatoire Pierre Auger,<br />et nous intéressons ensuite à l'acceptance de son détecteur de surface<br />afin de pouvoir construire des cartes de couverture précise du ciel, outil<br />indispensable à l'étude des anisotropies. Nous présentons ensuite des<br />méthodes de recherche d'anisotropies sur le ciel, et analysons les deux<br />premières années de prise de données de l'Observatoire.<br /><br />Après une description des phénomènes susceptibles d'influencer la<br />propagation et l'observation de sources de rayons cosmiques d'ultra-haute<br />énergie, nous présentons des simulations numériques destinées à<br />prédire des observables telles que le spectre, les anisotropies et la<br />composition mesurables par Auger, en fonction de différents modèles<br />astrophysiques. Nous montrons que les champs magnétiques extragalactiques<br />peuvent jouer un rôle crucial, surtout si les rayons cosmiques sont en<br />partie des noyaux lourds. Enfin, nous montrons que la propagation de ces<br />particules depuis une source proche génère des flux secondaires de<br />rayons gamma qui pourront être détectés par des télescopes gamma au<br />TeV.
6

Modelling Dust Processing and Evolution in Extreme Environments as seen by Herschel Space Observatory / Modélisation de processus qui agissent sur la poussière et de son évolution dans les régions extrêmes comme observé pas Herschel Space Observatory

Bocchio, Marco 16 September 2014 (has links)
L'objectif principal de mon travail de thèse est de comprendre les processus qui agissent sur la poussière pendant le couplage entre le milieu interstellaire galactique et le milieu intra-amas. Ce processus est d'intérêt particulier dans les phénomènes violents comme les interactions galaxie-galaxie ou le "Ram Pressure Stripping" causé par la chute d'une galaxie vers le centre de l'amas.Initialement, je me suis concentré sur le problème de la destruction de la poussière et le processus de chauffage, en re-visitant les modèles présents en littérature. J'ai particulièrement insisté sur les cas des environnements extrêmes comme le gaz chaud de type coronale (e.g., IGM, ICM, HIM) et les chocs interstellaires générés par les supernovae. Sous ces conditions les petits grains sont détruits rapidement et les gros grains sont chauffés par les collisions avec les électrons énergétiques, en rendent la distribution spectral d'énergie de la poussière très différente de ce qu'on observe dans le milieu interstellaire diffus.Pour tester nos modèles j'ai les appliqués au cas d'une galaxie en interaction, NGC 4438. Les données Herschel de cette galaxie indiquent la présence de la poussière avec une température plus élevée de ce qu'on s'attendait.Avec une analyse à plusieurs longueurs d'onde on montre que cette poussière chaude semble être dans un gaz ionisé et chaud et donc subir à la fois le chauffage collisionnel et la destruction des petits grains.De plus, je me suis focalisé sur l'énigme de longue date à propos de la différence entre les échelles de temps de destruction et formation de la poussière dans la Voie Lactée. Basées sur l'efficacité de destruction de la poussière dans les chocs interstellaires, les estimations précédentes portent à une durée de vie de la poussière plus courte que l'échelle de temps typique de sa formation dans les étoiles AGB. En utilisant un modèle de poussière récent et les dernières estimations pour l'évolution de la poussière, on a réévalué la durée de vie de la poussière dans notre Galaxie. Finalement, j'ai tourné mon attention au phénomène de "Ram Pressure Stripping''. La galaxie ESO 137-001 représente un des meilleurs cas pour étudier cet effet. Sa longue queue H2 intégrée dans une queue de gaz chaud et ionisé soulève des questions sur son possible arrachement de la galaxie ou sa formation en aval dans la queue. Basé sur des récentes simulations numériques, j'ai montré que la formation des molécules de H2 sur la surface des grains dans la queue est un scénario viable. / The main goal of my PhD study is to understand the dust processing that occurs during the mixing between the galactic interstellar medium and the intracluster medium. This process is of particular interest in violent phenomena such as galaxy-galaxy interactions or the "Ram Pressure Stripping'' due to the infalling of a galaxy towards the cluster centre.Initially, I focus my attention to the problem of dust destruction and heating processes, re-visiting the available models in literature. I particularly stress on the cases of extreme environments such as a hot coronal-type gas (e.g., IGM, ICM, HIM) and supernova-generated interstellar shocks. Under these conditions small grains are destroyed on short timescales and large grains are heated by the collisions with fast electrons making the dust spectral energy distribution very different from what observed in the diffuse ISM.In order to test our models I apply them to the case of an interacting galaxy, NGC 4438. Herschel data of this galaxy indicates the presence of dust with a higher-than-expected temperature.With a multi-wavelength analysis on a pixel-by-pixel basis we show that this hot dust seems to be embedded in a hot ionised gas therefore undergoing both collisional heating and small grain destruction.Furthermore, I focus on the long-standing conundrum about the dust destruction and dust formation timescales in the Milky Way. Based on the destruction efficiency in interstellar shocks, previous estimates led to a dust lifetime shorter than the typical timescale for dust formation in AGB stars. Using a recent dust model and an updated dust processing model we re-evaluate the dust lifetime in our Galaxy. Finally, I turn my attention to the phenomenon of "Ram Pressure Stripping''. The galaxy ESO 137-001 represents one of the best cases to study this effect. Its long H2 tail embedded in a hot and ionised tail raises questions about its possible stripping from the galaxy or formation downstream in the tail. Based on recent hydrodynamical numerical simulations, I show that the formation of H2 molecules on the surface of dust grains in the tail is a viable scenario.
7

Non-Gaussianity and extragalactic foregrounds to the Cosmic Microwave Background / Non-Gaussianité et avant-plans extragalactiques au fond de rayonnement fossile

Lacasa, Fabien 23 September 2013 (has links)
Cette thèse, écrite en anglais, étudie la non-Gaussianité (NG) des avant-plans extragalactiques au fond de rayonnement fossile (FDC), celui-ci étant une des observables de choix de la cosmologie actuelle. Ces dernières années a émergé la recherche de déviations du FDC à la loi Gaussienne, car elles permettraient de discriminer les modèles de génération des perturbations primordiales. Cependant les mesures du FDC, e.g. par le satellite Planck, sont contaminées par différents avant-plans. J'ai étudié en particulier les avant-plans extragalactiques traçant la structure à grande échelle de l'univers: les sources ponctuelles radio et infrarouges et l'effet Sunyaev-Zel'dovich thermique (tSZ). Je décris donc les outils statistiques caractérisant un champ aléatoire : les fonctions de corrélations, et leur analogue harmonique : les polyspectres. En particulier le bispectre est l'indicateur de plus bas ordre de NG avec le plus fort rapport signal sur bruit (SNR) potentiel. Je décris comment il peut être estimé sur des données en tenant compte d'un masque (e.g. galactique), et propose une méthode de visualisation du bispectre plus adaptée que les préexistantes. Je décris ensuite la covariance d'une mesure de polyspectre, une méthode pour générer des simulations non-Gaussiennes, et comment la statistique d'un champ 3D se projette sur la sphère lors de l'intégration sur la ligne de visée. Je décris ensuite la genèse des perturbations de densité par l'inflation standard et leur possible NG, comment elles génèrent les anisotropies du FDC et croissent pour former la structure à grande échelle de l'univers actuel. Pour décrire cette dite structure, j'expose le modèle de halo et propose une méthode diagrammatique pour calculer les polyspectres du champ de densité des galaxies et avoir une représentation simple et puissante des termes impliqués. Puis je décris les avant-plans au FDC, tant galactiques que extragalactiques. J'expose la physique de l'effet tSZ et comment décrire sa distribution spatiale avec le modèle de halo. Puis je décris les sources extragalactiques et présente une prescription pour la NG de sources corrélées. Pour le fond diffus infrarouge (FDI) j'introduis une modélisation physique par le modèle de halo et la méthode diagrammatique. Je calcule numériquement le bispectre 3D des galaxies et obtiens la première prédiction du bispectre angulaire FDI. Je montre les différentes contributions et l'évolution temporelle du bispectre des galaxies. Pour le bispectre du FDI, je montre ses différents termes, sa dépendence en échelle et en configuration, et comment il varie avec les paramètres du modèle. Par analyse de Fisher, je montre qu'il apporte de fortes contraintes sur ces paramètres, complémentaires ou supérieures à celles venant du spectre. Enfin, je décris mon travail de mesure de la NG. J'introduis d'abord un estimateur pour l'amplitude du bispectre FDI, et montre comment le combiner avec de similaires pour les sources radio et le FDC, pour une contrainte jointe des différentes sources de NG. Je quantifie la contamination des sources ponctuelles à l'estimation de NG primordiale ; pour Planck elle est négligeable aux fréquences centrales du FDC. Je décris ensuite ma mesure du bispectre FDI sur les données Planck ; il est détecté très significativement à 217, 353 et 545 GHz, avec des SNR allant de 5.8 à 28.7. Sa forme est cohérente entre les différentes fréquences, de même que l'amplitude intrinsèque de NG. Enfin, je décris ma mesure du bispectre tSZ, sur des simulations et sur les cartes tSZ estimées par Planck, validant la robustesse de l'estimation via des simulations d'avant-plans. Le bispectre tSZ est détecté avec un SNR~200. Son amplitude et sa dépendence en échelle et en configuration sont cohérentes avec la carte des amas détectés et avec les simulations. Enfin, cette mesure place une contrainte sur les paramètres cosmologiques : sigma_8 (Omega_b/0.049)^0.35 = 0.74+/-0.04 en accord avec les autres statistiques tSZ. / This PhD thesis, written in english, studies the non-Gaussianity (NG) of extragalactic foregrounds to the Cosmic Microwave Background (CMB), the latter being one of the golden observables of today's cosmology. In the last decade has emerged research for deviations of the CMB to the Gaussian law, as they would discriminate the models for the generation of primordial perturbations. However the CMB measurements, e.g. by the Planck satellite, are contaminated by several foregrounds. I studied in particular the extragalactic foregrounds which trace the large scale structure of the universe : radio and infrared point-sources and the thermal Sunyaev-Zel'dovich effect (tSZ). I hence describe the statistical tools to characterise a random field : the correlation functions, and their harmonic counterpart : the polyspectra. In particular the bispectrum is the lowest order indicator of NG, with the highest potential signal to noise ratio (SNR). I describe how it can be estimated on data, accounting for a potential mask (e.g. galactic), and propose a method to visualise the bispectrum, which is more adapted than the already existing ones. I then describe the covariance of a polyspectrum measurement, a method to generate non-Gaussian simulations, and how the statistic of a 3D field projects onto the sphere when integrating along the line-of-sight. I then describe the generation of density perturbations by the standard inflation model and their possible NG, how they yield the CMB anisotropies and grow to form the large scale structure of today's universe. To describe this large scale structure, I present the halo model and propose a diagrammatic method to compute the polyspectra of the galaxy density field and to have a simple and powerful representation of the involved terms. I then describe the foregrounds to the CMB, galactic as well as extragalactic. I briefly describe the physics of the thermal Sunyaev-Zel'dovich effect and how to describe its spatial distribution with the halo model. I then describe the extragalactic point-sources and present a prescription for the NG of clustered sources. For the Cosmic Infrared Background (CIB) I introduce a physical modeling with the halo model and the diagrammatic method. I compute numerically the 3D galaxy bispectrum and produce the first theoretical prediction of the CIB angular bispectrum. I show the contributions of the different terms and the temporal evolution of the galaxy bispectrum. For the CIB angular bispectrum, I show its different terms, its scale and configuration dependence, and how it varies with model parameters. By Fisher analysis, I show it allows very good constraints on these parameters, complementary to or better than those coming from the power spectrum. Finally, I describe my work on measuring NG. I first introduce an estimator for the amplitude of the CIB bispectrum, and show how to combine it with similar ones for radio sources and the CMB, for a joint constraint of the different sources of NG. I quantify the contamination of extragalactic point-sources to the estimation of primordial NG ; for Planck it is negligible for the central CMB frequencies. I then describe my measurement of the CIB bispectrum on Planck data ; it is very significantly detected at 217, 353 and 545 GHz with SNR ranging from 5.8 to 28.7. Its shape is consistent between frequencies, as well as the intrinsic amplitude of NG. Ultimately, I describe my measurement of the tSZ bispectrum, on simulations and on Compton parameter maps estimated by Planck, validating the robustness of the estimation thanks to realist foreground simulations. The tSZ bispectrum is very significantly detected with SNR~200. Its amplitude and its scale and configuration dependence are consistent with the projected map of detected clusters and tSZ simulations. Finally, this measurement allows to put a constraint on the cosmological parameters : sigma_8*(Omega_b/0.049)^0.35 = 0.74+/-0.04 in agreement with other tSZ statistics.

Page generated in 0.0913 seconds