• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sources énergétiques, champs magnétiques extra-galactiques, astroparticules : énigmes astrophysiques vues par les rayons cosmiques de ultra-haute énergie

Kotera, Kumiko 08 September 2009 (has links) (PDF)
Ce travail de thèse se situe à l'interface de trois problématiques, que j'explore à l'aide de la propagation des rayons cosmiques de ultra-haute énergie : les sources énergétiques dans l'Univers, les champs magnétiques extra-galactiques et les astroparticules secondaires (neutrinos et rayons gammas). Dans ce manuscrit, je présente d'abord un survol de la situation expérimentale et théorique des rayons cosmiques de ultra-haute énergie ; je détaille ensuite les mécanismes de production des particules secondaires lors de leur propagation, et donne une revue sur les connaissances actuelles sur les champs magnétiques extra-galactiques. Je propose des modélisations semi-analytiques et analytiques du transport des rayons cosmiques dans ces champs, qui ont pour but de pallier la complexité et la mise en oeuvre lourde des outils existants (simulations MHD), tout en prenant en compte des phénomènes physiques probablement décisifs dans le transport des particules chargées, rarement traités dans la littérature (par exemple l'enrichissement magnétique par des sources astrophysiques ou la turbulence à petite échelle). J'ai également développé un outil numérique qui marie et améliore des codes existants pour traiter les processus d'interaction des rayons cosmiques au cours de leur propagation. A l'aide de ces techniques, je traite de nombreux problèmes-clés des rayons cosmiques de ultra-haute énergie, notamment l'influence du champ magnétique sur la coupure à basse énergie de la composante extra-galactique des rayons cosmiques, l'interprétation des résultats d'anisotropie de l'Observatoire Auger, les aspects multi-messagers de sources situées dans les environnements magnétisés.
2

Rayons cosmiques et rayonnement du cosmos

Parizot, Etienne 14 December 2005 (has links) (PDF)
Les rayons cosmiques occupent une place privilégiée au sein de l'astrophysique et de la physique des astroparticules, non seulement parce qu'ils participent à la plupart des processus énergétiques à l'œuvre dans l'univers, mais parce que leur existence même et la continuité de leur spectre d'énergie (des énergies thermiques à plus de 1020 eV) soulèvent des questions d'une grande fécondité et d'une richesse inattendue. La source de ces particules énergétiques sillonnant le cosmos demeure largement inconnue, et des décennies de recherche n'ont pas permis d'élucider pleinement le lien existant entre celles que l'on voit rayonner sur toute l'étendue du spectre électromagnétique dans telle ou telle source astronomique et celles que l'on détecte au voisinage de la Terre, porteuses d'informations précieuses pour la physique en général. Nous proposons une approche globale et pluridisciplinaire du rayonnement cosmique, insistant sur la nécessité de considérer conjointement ses trois dimensions spectrales : la distribution en énergie (spectre), la distribution angulaire (anisotropies) et la distribution en masse (composition). Nous analysons divers aspects de cette problématique — théoriques, phénoménologiques et expérimentaux — avec une attention particulière au cas des rayons cosmiques ultra-énergétiques, en relation avec l'Observatoire Pierre Auger, mais nous tentons également d'expliciter les liens existant entre les différentes gammes d'énergie, et de mettre en lumière l'importance de la transition galactique/ extragalactique. De nombreuses contraintes sont également apportées par l'astronomie non-thermique et l'astrophysique nucléaire, dont nous discutons certains aspects directement liés aux particules énergétiques, à leur accélération comme à leur propagation dans le cosmos.
3

Propagation et distribution sur le ciel des rayons cosmiques d'ultra-haute<br />énergie dans le cadre de l'Observatoire Pierre Auger

Armengaud, Éric 09 May 2006 (has links) (PDF)
L'origine des rayons cosmiques d'ultra haute énergie reste une énigme de<br />la physique contemporaine, que l'Observatoire Pierre Auger, détecteur<br />hybride d'une taille inégalée, va tenter de résoudre. L'observation<br />directe des sources de ces particules, ou de structures à grande échelle<br />sur le ciel associées à ces sources, est un des premiers objectifs de<br />cet observatoire. De telles observations permettront aussi de contraindre la<br />propagation des rayons cosmiques, qui, entre leurs sources et la Terre,<br />subissent d'une part des interactions sur des fonds de photons de basse<br />énergie, et d'autre part des déflections dans des champs magnétiques<br />astrophysiques.<br />Cette thèse comprend deux volets, afin d'observer les sources des rayons<br />cosmiques avec l'Observatoire Auger et de les modéliser.<br /><br />Nous commençons par décrire en détail l'Observatoire Pierre Auger,<br />et nous intéressons ensuite à l'acceptance de son détecteur de surface<br />afin de pouvoir construire des cartes de couverture précise du ciel, outil<br />indispensable à l'étude des anisotropies. Nous présentons ensuite des<br />méthodes de recherche d'anisotropies sur le ciel, et analysons les deux<br />premières années de prise de données de l'Observatoire.<br /><br />Après une description des phénomènes susceptibles d'influencer la<br />propagation et l'observation de sources de rayons cosmiques d'ultra-haute<br />énergie, nous présentons des simulations numériques destinées à<br />prédire des observables telles que le spectre, les anisotropies et la<br />composition mesurables par Auger, en fonction de différents modèles<br />astrophysiques. Nous montrons que les champs magnétiques extragalactiques<br />peuvent jouer un rôle crucial, surtout si les rayons cosmiques sont en<br />partie des noyaux lourds. Enfin, nous montrons que la propagation de ces<br />particules depuis une source proche génère des flux secondaires de<br />rayons gamma qui pourront être détectés par des télescopes gamma au<br />TeV.
4

Premières lumières du télescope EUSO-Ballon / First light of the EUSO-Balloon telescope : toward the detection of ultra-high energy cosmic rays from space

Catalano, Camille 18 December 2015 (has links)
Les rayons cosmiques ont été découverts il y a un siècle par Victor Hess à bord d'un vol scientifique en ballon. La physique des rayons cosmiques et les ballons stratosphériques ont partagé depuis lors une histoire commune, que ce soit pour d'authentiques découvertes ou en utilisant les ballons comme plateformes de test technologique pour de nouvelles missions satellites. Cette thèse, développée au sein de la collaboration JEM-EUSO, traite d'un démonstrateur en ballon stratosphérique. Notre but scientifique final est l'étude des Rayons Cosmiques de Ultra-Haute Energie (RCUHE), les particules les plus énergétiques connues dans l'Univers. Les RCUHES ont des énergies macroscopiques de plus de 10^20eV mais étant extrêmement rares, leurs origines sont encore inconnues. Ces derniers pénètrent notre atmosphère à une fréquence de un par km2 par siècle, produisant une gerbe atmosphérique géante, détectable notamment par la lumière de fluorescence ultraviolette qu'elle émet. Le principe de détection proposé par notre collaboration consiste dans l'utilisation d'un observatoire spatial, JEM-EUSO. Son objectif est d'observer un très grand volume d'atmosphère afin d'enregistrer un nombre significatif des événements ultra-violet de fluorescence initiés par les RCUHEs. Le démonstrateur EUSO-Ballon a été développé par la collaboration JEM-EUSO dans le but de démontrer les technologies et méthodes utilisées par le futur instrument spatial. Le 25 août 2014, EUSO-Ballon a été lâché depuis la base de ballons stratosphériques de Timmins (Ontario, Canada) par la division ballon du CNES. L'instrument a fonctionné pendant toute une nuit astronomique, observant depuis 38km d'altitude la lumière UV provenant de divers types de sols et de centaines de gerbes atmosphériques simulées. Ces dernières ont été produites par des flashers et un laser embarqués dans un hélicoptère volant sous EUSO-Ballon pendant deux heures. Ces résultats ont été rendus possibles par la restitution de l'attitude de l'instrument effectuée à l'IRAP, c'est-à-dire une analyse exhaustive des données du vol des différents appareils de mesure d'attitude de la nacelle du ballon. Une caractérisation précise de chaque sous-système était aussi indispensable à l'exploitation des données du vol. Le système optique innovant, composé de deux grandes lentilles de Fresnel, a été intégré et entièrement testé à l'IRAP. Face au large système réfractif de l'instrument, une nouvelle méthodologie de test a été développée. Les performances de l'optique, efficacité et spot focal, ont ainsi été mesurées et se sont révélées étonnamment différentes des prédictions des modèles numériques. Ces mesures sont utilisées pour l'analyse des données du premier vol et pour mieux comprendre le comportement de ces toutes nouvelles optiques, éléments clés dans la conception de l'instrument JEM-EUSO. / A century ago Cosmic Rays were discovered by Victor Hess during one of the very first scientific balloon flights. Ever since, Cosmic Ray physics and stratospheric balloons have shared a common history - either through genuine discoveries or by using balloon platforms as technology test beds for new satellite missions. This thesis, carried out within the JEM-EUSO collaboration, is about such a pathfinder balloon mission. Our ultimate science goal is the study of Ultra-High Energy Cosmic Rays (UHECR), the most energetic particles known in the Universe. Having macroscopic energies of over 10^20 eV, UHECRs are of yet unknown cosmic origin and are extremely rare. They penetrate our atmosphere at a rate of about one event per km2 and century, producing energetic atmospheric air showers, detectable through the ultraviolet fluorescence light they emit. The technique that our collaboration proposes for their detection consists of a spaceborne observatory, JEM-EUSO. Its objective is to monitor a very large volume of the Earth's nighttime atmosphere from above, recording a significant sample of ultraviolet light tracks initiated by UHECRs. In order to demonstrate the technologies and methods featured in the future space instrument, the EUSO-Balloon pathfinder has been developed by the JEM-EUSO collaboration. On August 25, 2014, EUSO-Balloon was launched from Timmins Stratospheric Balloon Base (Ontario, Canada) by the balloon division of the French Space Agency CNES. From a float altitude of 38 km, the instrument operated during the entire astronomical night, observing UV-light from a variety of groundcovers and from hundreds of simulated air showers, produced by flashers and a laser during a two-hour helicopter under-flight. These results have been made possible by the restitution of the instruments attitude carried out at IRAP, i.e. an exhaustive analysis of the flight data from various attitude sensors on board of the balloon gondola. Also, a precise understanding of the Fresnel optics was required to analyze the data of the first EUSO-balloon flight. The all new optical system, integrated and tested at IRAP, has been characterized during two measurement campaigns. To test this large refractive system, a new test method has been developed. The optics performance, i.e. the efficiency and point spread function, came as something of a surprise, since none of the numerical models had predicted the observed behavior. These measurements are used in the analysis of the flight data and for the deep understanding of these brand-new Fresnel optics, key element in the design of the JEM-EUSO instrument.
5

L’instrument EUSO-Balloon et analyse de son efficacité de photo-détection / The EUSO-balloon instrument and an analysis of its photo-detecting efficiency

Rabanal Reina, Julio Arturo 08 December 2016 (has links)
JEM-EUSO (Extreme Universe Space Observatory on Japanese Experiment Module) est une expérience basée sur un télescope spatial d’optique diffractive, avec des lentilles de Fresnel, qui sera installé sur l’ISS en 2020. Il a comme but l’étude des UHECR et vise à améliorer d’un facteur de 10 les mesures actuelles de l’Observatoire Pierre-Auger. Le télescope EUSO-Balloon, qui a été validé technologiquement en 2014 a été le premier prototype intégrant l’ensemble de la chaîne de détection du télescope JEM-EUSO. Le principe de détection est basé sur la capture des photons UV individuels (photodétection) produits par fluorescence lors de l’interaction d’EAS avec l’atmosphère terrestre. Cette lumière est si faible qu’elle nécessite un instrument avec une efficacité de 100% pour la détection d’un photon. Le travail présenté dans ce manuscrit a porté sur toutes les étapes du projet EUSO-Balloon. Un procédé original de récupération de l’information des pixels avec une sensibilité faible a été développé. Le procédé consiste à utiliser une courbe (s-curve) générée par la modification du seuil de discrimination des signaux analogiques provenant des anodes des MAPMTs. Elle est valable pour tous les télescopes EUSO et sera utile dans l’espace, où la manipulation de l’appareil est limitée. / JEM-EUSO (Extreme Universe Space Observatory on Japanese Experiment Module) is an experiment based on a diffractive optical telescope, with Fresnel lenses, that will be installed on the ISS in 2020. It aims to study the UHECR, improving by a factor of 10 the current measurements of the Pierre-Auger Observatory. The EUSO-Balloon telescope, technically validated in 2014, was the first prototype with the entire detection chain of the JEM-EUSO telescope. The detection principle is based on the capture of individual UV photons (photodetection) produced by fluorescence when the EAS interact with the Earth’s atmosphere. The fluorescence light is so low that an instrument with 100% efficiency for the detection of a photon, is required. The work presented in this manuscript has dealt with all the steps of EUSO-Balloon project. An original procedure has been developed to recover the information from pixels with low sensitivity. The method consists in using a curve generated by the modification of the threshold used to discriminate the analog signals produced by the anodes of the MAPMTs. It is valid for all EUSO telescopes and will be most useful in space where the manipulation of the apparatus is limited.
6

Etude de la nature des rayons cosmiques d'ultra haute énergie à partir des premières données de l'Observatoire Pierre Auger

Maurin, Gilles 22 September 2005 (has links) (PDF)
Du fait de leur faible flux, l'existence des rayons cosmiques d'ultra haute énergie (RCUHE, E>$10^(18)$\,\textrm(eV)) est une énigme depuis plus d'un demi siècle. On ne connaît en effet ni leur origine, ni leur nature, ni même l'énergie maximale qu'ils peuvent atteindre. Pour obtenir une statistique suffisante et répondre à ces questions, l'Observatoire Pierre AUGER est actuellement en construction en Argentine et sera à terme complété par un deuxième détecteur au Colorado afin de scruter le ciel de l'hémisphère nord. L'origine et la nature des RCUHE étant liées, l'identification du primaire est une étape cruciale pour valider, réfuter ou contraindre les nombreux modèles théoriques capables d'expliquer leur production. En particulier, la présence de photons ou de neutrinos peut être la signature de modèles impliquant de la nouvelle physique (défauts topologiques, particules supermassives...). Le travail de cette thèse s'insère donc dans ce cadre en cherchant à identifier la nature des RCUHE observés par l'observatoire depuis le mois de janvier 2004. Après avoir récapitulé les résultats des expériences précédentes et présenté les méthodes de détection, ce manuscrit décrit les modèles théoriques en soulignant le type de particules de haute énergie qu'ils peuvent produire. La partie suivante traite des différentes méthodes utilisées par l'observatoire pour permettre l'identification du primaire par la gerbe qu'il crée dans l'atmosphère. Divers critères sont finalement testés sur des simulations puis utilisés dans une analyse qui a permis d'estimer la composition hadronique et de chercher la présence de photons parmi les RCUHE.
7

Influence de l'Atmosphère sur la Détection Spatiale des Rayons Cosmiques d'Ultra-Haute Energie

Moreggia, Sylvain 21 June 2007 (has links) (PDF)
EUSO est un projet de détection spatiale des rayons cosmiques d'ultra-haute énergie. Son principe consiste à observer les photons de fluorescence émis par les gerbes atmosphériques depuis un télescope embarqué à bord de la Station Spatiale Internationale.<br />Au cours de cette thèse, un logiciel de simulation a été développé pour étudier les caractéristiques de ce nouveau concept de détection. Il modélise les différentes étapes de la détection : développement des gerbes atmosphériques, génération des photons de fluorescence et Cerenkov, et transfert des photons jusqu'à la lentille du télescope. Il inclut notamment un algorithme Monte-Carlo de propagation des photons dans l'atmosphère, traitant la diffusion multiple en conditions de ciel clair ainsi qu'en présence de nuages et d'aérosols.<br />Avec ce programme de simulation, l'impact des conditions atmosphériques sur les performances d'un détecteur spatial a été étudié. La modélisation précise de la propagation des photons dans l'atmosphère a permis de quantifier la contribution des photons diffusés au signal détecté.

Page generated in 0.105 seconds