• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Towards Interior Proximal Point Methods for Solving Equilibrium Problems

Nguyen, Thi Thu Van 01 September 2008 (has links)
This work is devoted to study efficient numerical methods for solving nonsmooth convex equilibrium problems in the sense of Blum and Oettli. First we consider the auxiliary problem principle which is a generalization to equilibrium problems of the classical proximal point method for solving convex minimization problems. This method is based on a fixed point property. To make the algorithm implementable we introduce the concept of $mu$-approximation and we prove that the convergence of the algorithm is preserved when in the subproblems the nonsmooth convex functions are replaced by $mu$-approximations. Then we explain how to construct $mu$-approximations using the bundle concept and we report some numerical results to show the efficiency of the algorithm. In a second part, we suggest to use a barrier function method for solving the subproblems of the previous method. We obtain an interior proximal point algorithm that we apply first for solving nonsmooth convex minimization problems and then for solving equilibrium problems. In particular, two interior extragradient algorithms are studied and compared on some test problems.
2

Block-decomposition and accelerated gradient methods for large-scale convex optimization

Ortiz Diaz, Camilo 08 June 2015 (has links)
In this thesis, we develop block-decomposition (BD) methods and variants of accelerated *9gradient methods for large-scale conic programming and convex optimization, respectively. The BD methods, discussed in the first two parts of this thesis, are inexact versions of proximal-point methods applied to two-block-structured inclusion problems. The adaptive accelerated methods, presented in the last part of this thesis, can be viewed as new variants of Nesterov's optimal method. In an effort to improve their practical performance, these methods incorporate important speed-up refinements motivated by theoretical iteration-complexity bounds and our observations from extensive numerical experiments. We provide several benchmarks on various important problem classes to demonstrate the efficiency of the proposed methods compared to the most competitive ones proposed earlier in the literature. In the first part of this thesis, we consider exact BD first-order methods for solving conic semidefinite programming (SDP) problems and the more general problem that minimizes the sum of a convex differentiable function with Lipschitz continuous gradient, and two other proper closed convex (possibly, nonsmooth) functions. More specifically, these problems are reformulated as two-block monotone inclusion problems and exact BD methods, namely the ones that solve both proximal subproblems exactly, are used to solve them. In addition to being able to solve standard form conic SDP problems, the latter approach is also able to directly solve specially structured non-standard form conic programming problems without the need to add additional variables and/or constraints to bring them into standard form. Several ingredients are introduced to speed-up the BD methods in their pure form such as: adaptive (aggressive) choices of stepsizes for performing the extragradient step; and dynamic updates of scaled inner products to balance the blocks. Finally, computational results on several classes of SDPs are presented showing that the exact BD methods outperform the three most competitive codes for solving large-scale conic semidefinite programming. In the second part of this thesis, we present an inexact BD first-order method for solving standard form conic SDP problems which avoids computations of exact projections onto the manifold defined by the affine constraints and, as a result, is able to handle extra large-scale SDP instances. In this BD method, while the proximal subproblem corresponding to the first block is solved exactly, the one corresponding to the second block is solved inexactly in order to avoid finding the exact solution of a linear system corresponding to the manifolds consisting of both the primal and dual affine feasibility constraints. Our implementation uses the conjugate gradient method applied to a reduced positive definite dual linear system to obtain inexact solutions of the latter augmented primal-dual linear system. In addition, the inexact BD method incorporates a new dynamic scaling scheme that uses two scaling factors to balance three inclusions comprising the optimality conditions of the conic SDP. Finally, we present computational results showing the efficiency of our method for solving various extra large SDP instances, several of which cannot be solved by other existing methods, including some with at least two million constraints and/or fifty million non-zero coefficients in the affine constraints. In the last part of this thesis, we consider an adaptive accelerated gradient method for a general class of convex optimization problems. More specifically, we present a new accelerated variant of Nesterov's optimal method in which certain acceleration parameters are adaptively (and aggressively) chosen so as to: preserve the theoretical iteration-complexity of the original method; and substantially improve its practical performance in comparison to the other existing variants. Computational results are presented to demonstrate that the proposed adaptive accelerated method performs quite well compared to other variants proposed earlier in the literature.
3

Generalized vector equilibrium problems and algorithms for variational inequality in hadamard manifolds / Problemas de equilíbrio vetoriais generalizados e algoritmos para desigualdades variacionais em variedades de hadamard

Batista, Edvaldo Elias de Almeida 20 October 2016 (has links)
Submitted by Jaqueline Silva (jtas29@gmail.com) on 2016-12-09T17:10:49Z No. of bitstreams: 2 Tese - Edvaldo Elias de Almeida Batista - 2016.pdf: 1198471 bytes, checksum: 88d7db305f0cfe6be9b62496a226217f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2016-12-09T17:11:03Z (GMT) No. of bitstreams: 2 Tese - Edvaldo Elias de Almeida Batista - 2016.pdf: 1198471 bytes, checksum: 88d7db305f0cfe6be9b62496a226217f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2016-12-09T17:11:03Z (GMT). No. of bitstreams: 2 Tese - Edvaldo Elias de Almeida Batista - 2016.pdf: 1198471 bytes, checksum: 88d7db305f0cfe6be9b62496a226217f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-10-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this thesis, we study variational inequalities and generalized vector equilibrium problems. In Chapter 1, several results and basic definitions of Riemannian geometry are listed; we present the concept of the monotone vector field in Hadamard manifolds and many of their properties, besides, we introduce the concept of enlargement of a monotone vector field, and we display its properties in a Riemannian context. In Chapter 2, an inexact proximal point method for variational inequalities in Hadamard manifolds is introduced, and its convergence properties are studied; see [7]. To present our method, we generalize the concept of enlargement of monotone operators, from a linear setting to the Riemannian context. As an application, an inexact proximal point method for constrained optimization problems is obtained. In Chapter 3, we present an extragradient algorithm for variational inequality associated with the point-to-set vector field in Hadamard manifolds and study its convergence properties; see [8]. In order to present our method, the concept of enlargement of maximal monotone vector fields is used and its lower-semicontinuity is established to obtain the convergence of the method in this new context. In Chapter 4, we present a sufficient condition for the existence of a solution to the generalized vector equilibrium problem on Hadamard manifolds using a version of the KnasterKuratowski-Mazurkiewicz Lemma; see [6]. In particular, the existence of solutions to optimization, vector optimization, Nash equilibria, complementarity, and variational inequality is a special case of the existence result for the generalized vector equilibrium problem. / Nesta tese, estudamos desigualdades variacionais e o problema de equilíbrio vetorial generalizado. No Capítulo 1, vários resultados e definições elementares sobre geometria Riemanniana são enunciados; apresentamos o conceito de campo vetorial monótono e muitas de suas propriedades, além de introduzir o conceito de alargamento de um campo vetorial monótono e exibir suas propriedades em um contexto Riemanniano. No Capítulo 2, um método de ponto proximal inexato para desigualdades variacionais em variedades de Hadamard é introduzido e suas propriedades de convergência são estudadas; veja [7]. Para apresentar o nosso método, generalizamos o conceito de alargamento de operadores monótonos, do contexto linear ao contexto de Riemanniano. Como aplicação, é obtido um método de ponto proximal inexato para problemas de otimização com restrições. No Capítulo 3, apresentamos um algoritmo extragradiente para desigualdades variacionais associado a um campo vetorial ponto-conjunto em variedades de Hadamard e estudamos suas propriedades de convergência; veja [8]. A fim de apresentar nosso método, o conceito de alargamento de campos vetoriais monótonos é utilizado e sua semicontinuidade inferior é estabelecida, a fim de obter a convergência do método neste novo contexto. No Capítulo 4, apresentamos uma condição suficiente para a existência de soluções para o problema de equilíbrio vetorial generalizado em variedades de Hadamard usando uma versão do Lema Knaster-Kuratowski-Mazurkiewicz; veja [6]. Em particular, a existência de soluções para problemas de otimização, otimização vetorial, equilíbrio de Nash, complementaridade e desigualdades variacionais são casos especiais do resultado de existência do problema de equilíbrio vetorial generalizado.
4

Multi-player games in the era of machine learning

Gidel, Gauthier 07 1900 (has links)
Parmi tous les jeux de société joués par les humains au cours de l’histoire, le jeu de go était considéré comme l’un des plus difficiles à maîtriser par un programme informatique [Van Den Herik et al., 2002]; Jusqu’à ce que ce ne soit plus le cas [Silveret al., 2016]. Cette percée révolutionnaire [Müller, 2002, Van Den Herik et al., 2002] fût le fruit d’une combinaison sophistiquée de Recherche arborescente Monte-Carlo et de techniques d’apprentissage automatique pour évaluer les positions du jeu, mettant en lumière le grand potentiel de l’apprentissage automatique pour résoudre des jeux. L’apprentissage antagoniste, un cas particulier de l’optimisation multiobjective, est un outil de plus en plus utile dans l’apprentissage automatique. Par exemple, les jeux à deux joueurs et à somme nulle sont importants dans le domain des réseaux génératifs antagonistes [Goodfellow et al., 2014] ainsi que pour maîtriser des jeux comme le Go ou le Poker en s’entraînant contre lui-même [Silver et al., 2017, Brown andSandholm, 2017]. Un résultat classique de la théorie des jeux indique que les jeux convexes-concaves ont toujours un équilibre [Neumann, 1928]. Étonnamment, les praticiens en apprentissage automatique entrainent avec succès une seule paire de réseaux de neurones dont l’objectif est un problème de minimax non-convexe et non-concave alors que pour une telle fonction de gain, l’existence d’un équilibre de Nash n’est pas garantie en général. Ce travail est une tentative d'établir une solide base théorique pour l’apprentissage dans les jeux. La première contribution explore le théorème minimax pour une classe particulière de jeux non-convexes et non-concaves qui englobe les réseaux génératifs antagonistes. Cette classe correspond à un ensemble de jeux à deux joueurs et a somme nulle joués avec des réseaux de neurones. Les deuxième et troisième contributions étudient l’optimisation des problèmes minimax, et plus généralement, les inégalités variationnelles dans le cadre de l’apprentissage automatique. Bien que la méthode standard de descente de gradient ne parvienne pas à converger vers l’équilibre de Nash de jeux convexes-concaves simples, il existe des moyens d’utiliser des gradients pour obtenir des méthodes qui convergent. Nous étudierons plusieurs techniques telles que l’extrapolation, la moyenne et la quantité de mouvement à paramètre négatif. La quatrième contribution fournit une étude empirique du comportement pratique des réseaux génératifs antagonistes. Dans les deuxième et troisième contributions, nous diagnostiquons que la méthode du gradient échoue lorsque le champ de vecteur du jeu est fortement rotatif. Cependant, une telle situation peut décrire un pire des cas qui ne se produit pas dans la pratique. Nous fournissons de nouveaux outils de visualisation afin d’évaluer si nous pouvons détecter des rotations dans comportement pratique des réseaux génératifs antagonistes. / Among all the historical board games played by humans, the game of go was considered one of the most difficult to master by a computer program [Van Den Heriket al., 2002]; Until it was not [Silver et al., 2016]. This odds-breaking break-through [Müller, 2002, Van Den Herik et al., 2002] came from a sophisticated combination of Monte Carlo tree search and machine learning techniques to evaluate positions, shedding light upon the high potential of machine learning to solve games. Adversarial training, a special case of multiobjective optimization, is an increasingly useful tool in machine learning. For example, two-player zero-sum games are important for generative modeling (GANs) [Goodfellow et al., 2014] and mastering games like Go or Poker via self-play [Silver et al., 2017, Brown and Sandholm,2017]. A classic result in Game Theory states that convex-concave games always have an equilibrium [Neumann, 1928]. Surprisingly, machine learning practitioners successfully train a single pair of neural networks whose objective is a nonconvex-nonconcave minimax problem while for such a payoff function, the existence of a Nash equilibrium is not guaranteed in general. This work is an attempt to put learning in games on a firm theoretical foundation. The first contribution explores minimax theorems for a particular class of nonconvex-nonconcave games that encompasses generative adversarial networks. The proposed result is an approximate minimax theorem for two-player zero-sum games played with neural networks, including WGAN, StarCrat II, and Blotto game. Our findings rely on the fact that despite being nonconcave-nonconvex with respect to the neural networks parameters, the payoff of these games are concave-convex with respect to the actual functions (or distributions) parametrized by these neural networks. The second and third contributions study the optimization of minimax problems, and more generally, variational inequalities in the context of machine learning. While the standard gradient descent-ascent method fails to converge to the Nash equilibrium of simple convex-concave games, there exist ways to use gradients to obtain methods that converge. We investigate several techniques such as extrapolation, averaging and negative momentum. We explore these techniques experimentally by proposing a state-of-the-art (at the time of publication) optimizer for GANs called ExtraAdam. We also prove new convergence results for Extrapolation from the past, originally proposed by Popov [1980], as well as for gradient method with negative momentum. The fourth contribution provides an empirical study of the practical landscape of GANs. In the second and third contributions, we diagnose that the gradient method breaks when the game’s vector field is highly rotational. However, such a situation may describe a worst-case that does not occur in practice. We provide new visualization tools in order to exhibit rotations in practical GAN landscapes. In this contribution, we show empirically that the training of GANs exhibits significant rotations around Local Stable Stationary Points (LSSP), and we provide empirical evidence that GAN training converges to a stable stationary point, which is a saddle point for the generator loss, not a minimum, while still achieving excellent performance.
5

Adversarial games in machine learning : challenges and applications

Berard, Hugo 08 1900 (has links)
L’apprentissage automatique repose pour un bon nombre de problèmes sur la minimisation d’une fonction de coût, pour ce faire il tire parti de la vaste littérature sur l’optimisation qui fournit des algorithmes et des garanties de convergences pour ce type de problèmes. Cependant récemment plusieurs modèles d’apprentissage automatique qui ne peuvent pas être formulé comme la minimisation d’un coût unique ont été propose, à la place ils nécessitent de définir un jeu entre plusieurs joueurs qui ont chaque leur propre objectif. Un de ces modèles sont les réseaux antagonistes génératifs (GANs). Ce modèle génératif formule un jeu entre deux réseaux de neurones, un générateur et un discriminateur, en essayant de tromper le discriminateur qui essaye de distinguer les vraies images des fausses, le générateur et le discriminateur s’améliore résultant en un équilibre de Nash, ou les images produites par le générateur sont indistinguable des vraies images. Malgré leur succès les GANs restent difficiles à entrainer à cause de la nature antagoniste du jeu, nécessitant de choisir les bons hyperparamètres et résultant souvent en une dynamique d’entrainement instable. Plusieurs techniques de régularisations ont été propose afin de stabiliser l’entrainement, dans cette thèse nous abordons ces instabilités sous l’angle d’un problème d’optimisation. Nous commençons par combler le fossé entre la littérature d’optimisation et les GANs, pour ce faire nous formulons GANs comme un problème d’inéquation variationnelle, et proposons de la littérature sur le sujet pour proposer des algorithmes qui convergent plus rapidement. Afin de mieux comprendre quels sont les défis de l’optimisation des jeux, nous proposons plusieurs outils afin d’analyser le paysage d’optimisation des GANs. En utilisant ces outils, nous montrons que des composantes rotationnelles sont présentes dans le voisinage des équilibres, nous observons également que les GANs convergent rarement vers un équilibre de Nash mais converge plutôt vers des équilibres stables locaux (LSSP). Inspirer par le succès des GANs nous proposons pour finir, une nouvelle famille de jeux que nous appelons adversarial example games qui consiste à entrainer simultanément un générateur et un critique, le générateur cherchant à perturber les exemples afin d’induire en erreur le critique, le critique cherchant à être robuste aux perturbations. Nous montrons qu’à l’équilibre de ce jeu, le générateur est capable de générer des perturbations qui transfèrent à toute une famille de modèles. / Many machine learning (ML) problems can be formulated as minimization problems, with a large optimization literature that provides algorithms and guarantees to solve this type of problems. However, recently some ML problems have been proposed that cannot be formulated as minimization problems but instead require to define a game between several players where each player has a different objective. A successful application of such games in ML are generative adversarial networks (GANs), where generative modeling is formulated as a game between a generator and a discriminator, where the goal of the generator is to fool the discriminator, while the discriminator tries to distinguish between fake and real samples. However due to the adversarial nature of the game, GANs are notoriously hard to train, requiring careful fine-tuning of the hyper-parameters and leading to unstable training. While regularization techniques have been proposed to stabilize training, we propose in this thesis to look at these instabilities from an optimization perspective. We start by bridging the gap between the machine learning and optimization literature by casting GANs as an instance of the Variational Inequality Problem (VIP), and leverage the large literature on VIP to derive more efficient and stable algorithms to train GANs. To better understand what are the challenges of training GANs, we then propose tools to study the optimization landscape of GANs. Using these tools we show that GANs do suffer from rotation around their equilibrium, and that they do not converge to Nash-Equilibria. Finally inspired by the success of GANs to generate images, we propose a new type of games called Adversarial Example Games that are able to generate adversarial examples that transfer across different models and architectures.

Page generated in 0.0687 seconds