• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 158
  • 114
  • 96
  • 45
  • 23
  • 12
  • 8
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 522
  • 148
  • 145
  • 70
  • 69
  • 45
  • 43
  • 36
  • 34
  • 32
  • 32
  • 30
  • 30
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efficacy of direct restorative materials in proximal box elevation on the margin quality and fracture resistance of molars restored with CAD/CAM onlays

Grubbs, Thomas David 01 January 2018 (has links)
The purpose of this study was to investigate the effect of four direct restorative materials that can be used in the proximal box elevation (PBE) technique. Materials and Methods: Seventy-five molar teeth were randomly assigned to one of five groups (n=15): Type II glass-ionomer (GI), Type II resin-modified glass-ionomer (RMGI), resin-based composite (RBC), bulk fill (BF) resin-based composite, and a control with no box elevation procedure. Specimens were prepared for a standard CAD-CAM ceramic onlay preparation with mesial cervical margins located 1 mm above CEJ (cemento-enamel junction) and distal cervical margins located 2 mm below the CEJ. PBE was used to elevate the distal margins to 1 mm above the CEJ in all groups except the control group. For the control group the onlay margin was placed directly on the prepared distal tooth without PBE. A Lava UltimateTM, CAD/CAM Resin, nano-Ceramic onlay Restorative (LAVU) was milled and bonded on all specimens with RelyX UltimateTMAdhesive Resin Cement. The margin quality of the tooth-PBE material and PBE material-onlay interface was evaluated with scanning electron microscopy (SEM) using epoxy replicas before and after mechanical loading (100,000 cycles, 1.2 Hz at 65N). In addition to margin quality, the fracture resistance of each group was measured using a universal testing machine. Fracture pattern was recorded by visual examination. One-way ANOVA was performed followed by Least Square Means. Results: For dentin margins, a statistically significant difference was detected between RMGI and control group at baseline (p=0.0442). All other groups GI, RBC, and BF showed no difference to control at baseline (p>0.05). No statistical significance was observed among groups for post-mechanical fatigue (p=0.8735). For onlay margins, no statistical significance was observed among groups for pre-mechanical fatigue, post-mechanical fatigue, or change (p=0.9713, p=0.528, p= 0.4385 respectively). No significant difference was observed for the fracture resistance among groups or for the type of break by material used (p=0.1593, p=0.77 respectively). Conclusion: Within the parameters of this study, following mechanical fatigue, the materials used for PBE: resin-modified glass-ionomer and glass-ionomer, resin-based composite and bulk-fill composite, did not influence results in terms of margin quality and fracture resistance. Therefore, collective findings suggest that these materials might be suitable for proximal box elevation procedures. Nevertheless, clinical caution is recommended with any PBE procedure and further testing of GI materials is needed.
2

Development of a Proximal Soil Sensing System for the Continuous Management of Acid Soil

Viscarra Rossel, Raphael A January 2001 (has links)
The notion that agriculturally productive land may be treated as a relatively homogeneous resource at thewithin-field scale is not sound. This assumption and the subsequent uniform application of planting material,chemicals and/or tillage effort may result in zones within a field being under- or over-treated. Arising fromthese are problems associated with the inefficient use of input resources, economically significant yield losses,excessive energy costs, gaseous or percolatory release of chemicals into the environment, unacceptable long-term retention of chemicals and a less-than-optimal growing environment. The environmental impact of cropproduction systems is substantial. In this millennium, three important issues for scientists and agrariancommunities to address are the need to efficiently manage agricultural land for sustainable production, themaintenance of soil and water resources and the environmental quality of agricultural land.Precision agriculture (PA) aims to identify soil and crop attribute variability, and manage it in an accurate andtimely manner for near-optimal crop production. Unlike conventional agricultural management where anaveraged whole-field analytical result is employed for decision-making, management in PA is based on site-specific soil and crop information. That is, resource application and agronomic practices are matched withvariation in soil attributes and crop requirements across a field or management unit. Conceptually PA makeseconomic and environmental sense, optimising gross margins and minimising the environmental impact ofcrop production systems. Although the economic justification for PA can be readily calculated, concepts suchas environmental containment and the safety of agrochemicals in soil are more difficult to estimate. However,it may be argued that if PA lessens the overall agrochemical load in agricultural and non-agriculturalenvironments, then its value as a management system for agriculture increases substantially.Management using PA requires detailed information of the spatial and temporal variation in crop yieldcomponents, weeds, soil-borne pests and attributes of physical, chemical and biological soil fertility. However,detailed descriptions of fine scale variation in soil properties have always been difficult and costly to perform.Sensing and scanning technologies need to be developed to more efficiently and economically obtain accurateinformation on the extent and variability of soil attributes that affect crop growth and yield. The primary aimof this work is to conduct research towards the development of an �on-the-go� proximal soil pH and limerequirement sensing system for real-time continuous management of acid soil. It is divided into four sections.Section one consists of two chapters; the first describes global and historical events that converged into thedevelopment of precision agriculture, while chapter two provides reviews of statistical and geostatisticaltechniques that are used for the quantification of soil spatial variability and of topics that are integral to theconcept of precision agriculture. The review then focuses on technologies that are used for the completeenumeration of soil, namely remote and proximal sensing.Section two comprises three chapters that deal with sampling and mapping methods. Chapter three provides ageneral description of the environment in the experimental field. It provides descriptions of the field site,topography, soil condition at the time of sampling, and the spatial variability of surface soil chemicalproperties. It also described the methods of sampling and laboratory analyses. Chapter four discusses some ofthe implications of soil sampling on analytical results and presents a review that quantifies the accuracy,precision and cost of current laboratory techniques. The chapter also presents analytical results that show theloss of information in kriged maps of lime requirement resulting from decreases in sample size. The messageof chapter four is that the evolution of precision agriculture calls for the development of �on-the-go� proximalsoil sensing systems to characterise soil spatial variability rapidly, economically, accurately and in a timelymanner. Chapter five suggests that for sparsely sampled data the choice of spatial modelling and mappingtechniques is important for reliable results and accurate representations of field soil variability. It assesses anumber of geostatistical methodologies that may be used to model and map non-stationary soil data, in thisinstance soil pH and organic carbon. Intrinsic random functions of order k produced the most accurate andparsimonious predictions of all of the methods tested.Section three consists of two chapters whose theme pertains to sustainable and efficient management of acidagricultural soil. Chapter six discusses soil acidity, its causes, consequences and current management practices.It also reports the global extent of soil acidity and that which occurs in Australia. The chapter closes byproposing a real-time continuous management system for the management of acid soil. Chapter seven reportsresults from experiments conducted towards the development of an �on-the-go� proximal soil pH and limerequirement sensing system that may be used for the real-time continuous management of acid soil.Assessment of four potentiometric sensors showed that the pH Ion Sensitive Field Effect Transistor (ISFET)was most suitable for inclusion in the proposed sensing system. It is accurate and precise, drift and hysteresisare low, and most importantly it�s response time is small. A design for the analytical system was presentedbased on flow injection analysis (FIA) and sequential injection analysis (SIA) concepts. Two different modesof operation were described. Kinetic experiments were conducted to characterise soil:0.01M CaCl2 pH(pHCaCl2) and soil:lime requirement buffer (pHbuffer) reactions. Modelling of the pHbuffer reactions describedtheir sequential, biphasic nature. A statistical methodology was devised to predict pHbuffer measurements usingonly initial reaction measurements at 0.5s, 1s, 2s and 3s measurements. The accuracy of the technique was 0.1pHbuffer units and the bias was low. Finally, the chapter describes a framework for the development of aprototype soil pH and lime requirement sensing system and the creative design of the system.The final section relates to the management of acid soil by liming. Chapter eight describes the development ofempirical deterministic models for rapid predictions of lime requirement. The response surface models arebased on soil:lime incubations, pHbuffer measurements and the selection of target pH values. These models aremore accurate and more practical than more conventional techniques, and may be more suitably incorporatedinto the spatial decision-support system of the proposed real-time continuous system for the management ofacid soil. Chapter nine presents a glasshouse liming experiment that was used to authenticate the limerequirement model derived in the previous chapter. It also presents soil property interactions and soil-plantrelationships in acid and ameliorated soil, to compare the effects of no lime applications, single-rate andvariable-rate liming. Chapter X presents a methodology for modelling crop yields in the presence ofuncertainty. The local uncertainty about soil properties and the uncertainty about model parameters wereaccounted for by using indicator kriging and Latin Hypercube Sampling for the propagation of uncertaintiesthrough two regression functions; a yield response function and one that equates resultant pH after theapplication of lime. Under the assumptions and constraints of the analysis, single-rate liming was found to bethe best management option.
3

FUNCTIONAL ANALYSIS OF AN α-HELICAL REGION IN THE HUMAN MULTIDRUG AND ORGANIC ANION TRANSPORTER MRP1

MOLINSKI, STEVEN 26 April 2010 (has links)
Multidrug resistance protein 1 (MRP1/ABCC1) is a 190 kDa phosphoglycoprotein that mediates the efflux of structurally diverse endo- and xenobiotics across biological membranes, and is known to play roles in drug disposition and resistance. The goal of the present study was to examine the functional importance of the region proximal to transmembrane helix 17 (TM17) of MRP1 by mutational analysis of seven conserved amino acids in this region. Thus, Glu1253, Glu1255, Val1261, Glu1262, Arg1263, Glu1266, and Tyr1267 were initially replaced by Ala, and after expression in HEK293T cells, the properties of the mutant proteins were investigated. All of the mutant proteins were expressed at levels comparable to wild-type MRP1, indicating that these residues are not critical for MRP1 biosynthesis. Vesicular transport assays showed that Ala-substitution of Glu1253 and Glu1262 significantly reduced 17β-estradiol 17-(β-D-glucuronide) (E217βG) and leukotriene C4 (LTC4) transport by 30-75% (p < 0.05), while Ala-substitution of Glu1255 and Glu1266 had no effect. Transport activity of the same-charge mutant E1253D was comparable to wild-type MRP1, while transport by E1262D remained reduced (by 50-75%) (p < 0.05). Kinetic analysis suggests that E1253A and E1262A exhibit reduced E217βG uptake as a result of a decreased uptake affinity (Km), while the reduced transport of E1262D was associated with a reduction in Vmax. Reciprocal mutations of potential interhelical bonding partners of Glu1253 and Glu1262 (Lys1141 and Arg1142, respectively), identified by examination of an atomic homology model of MRP1, did not significantly enhance MRP1 function. This suggests that even if bonding interactions exist between the side-chains of these two pairs of amino acids, the interactions are not exclusive. These findings also suggest that Glu1253 and Glu1262 have unique and complex roles in substrate binding and/or translocation. Ala-substitution of Val1261, Arg1263 and Tyr1267 caused a small reduction in E217βG transport (by 25-35%) (p < 0.05), while reductions in LTC4 transport were somewhat more substantial (by 30-55%) (p < 0.05). In conclusion, these studies have provided the first evidence of the functional importance of anionic residues in the COOH-proximal region of TM17 of MRP1. / Thesis (Master, Pharmacology & Toxicology) -- Queen's University, 2009-09-29 16:54:45.378
4

The study of claudins in a model system of the proximal tubule

Borovac, Jelena Unknown Date
No description available.
5

Development of a Proximal Soil Sensing System for the Continuous Management of Acid Soil

Viscarra Rossel, Raphael A January 2001 (has links)
The notion that agriculturally productive land may be treated as a relatively homogeneous resource at thewithin-field scale is not sound. This assumption and the subsequent uniform application of planting material,chemicals and/or tillage effort may result in zones within a field being under- or over-treated. Arising fromthese are problems associated with the inefficient use of input resources, economically significant yield losses,excessive energy costs, gaseous or percolatory release of chemicals into the environment, unacceptable long-term retention of chemicals and a less-than-optimal growing environment. The environmental impact of cropproduction systems is substantial. In this millennium, three important issues for scientists and agrariancommunities to address are the need to efficiently manage agricultural land for sustainable production, themaintenance of soil and water resources and the environmental quality of agricultural land.Precision agriculture (PA) aims to identify soil and crop attribute variability, and manage it in an accurate andtimely manner for near-optimal crop production. Unlike conventional agricultural management where anaveraged whole-field analytical result is employed for decision-making, management in PA is based on site-specific soil and crop information. That is, resource application and agronomic practices are matched withvariation in soil attributes and crop requirements across a field or management unit. Conceptually PA makeseconomic and environmental sense, optimising gross margins and minimising the environmental impact ofcrop production systems. Although the economic justification for PA can be readily calculated, concepts suchas environmental containment and the safety of agrochemicals in soil are more difficult to estimate. However,it may be argued that if PA lessens the overall agrochemical load in agricultural and non-agriculturalenvironments, then its value as a management system for agriculture increases substantially.Management using PA requires detailed information of the spatial and temporal variation in crop yieldcomponents, weeds, soil-borne pests and attributes of physical, chemical and biological soil fertility. However,detailed descriptions of fine scale variation in soil properties have always been difficult and costly to perform.Sensing and scanning technologies need to be developed to more efficiently and economically obtain accurateinformation on the extent and variability of soil attributes that affect crop growth and yield. The primary aimof this work is to conduct research towards the development of an �on-the-go� proximal soil pH and limerequirement sensing system for real-time continuous management of acid soil. It is divided into four sections.Section one consists of two chapters; the first describes global and historical events that converged into thedevelopment of precision agriculture, while chapter two provides reviews of statistical and geostatisticaltechniques that are used for the quantification of soil spatial variability and of topics that are integral to theconcept of precision agriculture. The review then focuses on technologies that are used for the completeenumeration of soil, namely remote and proximal sensing.Section two comprises three chapters that deal with sampling and mapping methods. Chapter three provides ageneral description of the environment in the experimental field. It provides descriptions of the field site,topography, soil condition at the time of sampling, and the spatial variability of surface soil chemicalproperties. It also described the methods of sampling and laboratory analyses. Chapter four discusses some ofthe implications of soil sampling on analytical results and presents a review that quantifies the accuracy,precision and cost of current laboratory techniques. The chapter also presents analytical results that show theloss of information in kriged maps of lime requirement resulting from decreases in sample size. The messageof chapter four is that the evolution of precision agriculture calls for the development of �on-the-go� proximalsoil sensing systems to characterise soil spatial variability rapidly, economically, accurately and in a timelymanner. Chapter five suggests that for sparsely sampled data the choice of spatial modelling and mappingtechniques is important for reliable results and accurate representations of field soil variability. It assesses anumber of geostatistical methodologies that may be used to model and map non-stationary soil data, in thisinstance soil pH and organic carbon. Intrinsic random functions of order k produced the most accurate andparsimonious predictions of all of the methods tested.Section three consists of two chapters whose theme pertains to sustainable and efficient management of acidagricultural soil. Chapter six discusses soil acidity, its causes, consequences and current management practices.It also reports the global extent of soil acidity and that which occurs in Australia. The chapter closes byproposing a real-time continuous management system for the management of acid soil. Chapter seven reportsresults from experiments conducted towards the development of an �on-the-go� proximal soil pH and limerequirement sensing system that may be used for the real-time continuous management of acid soil.Assessment of four potentiometric sensors showed that the pH Ion Sensitive Field Effect Transistor (ISFET)was most suitable for inclusion in the proposed sensing system. It is accurate and precise, drift and hysteresisare low, and most importantly it�s response time is small. A design for the analytical system was presentedbased on flow injection analysis (FIA) and sequential injection analysis (SIA) concepts. Two different modesof operation were described. Kinetic experiments were conducted to characterise soil:0.01M CaCl2 pH(pHCaCl2) and soil:lime requirement buffer (pHbuffer) reactions. Modelling of the pHbuffer reactions describedtheir sequential, biphasic nature. A statistical methodology was devised to predict pHbuffer measurements usingonly initial reaction measurements at 0.5s, 1s, 2s and 3s measurements. The accuracy of the technique was 0.1pHbuffer units and the bias was low. Finally, the chapter describes a framework for the development of aprototype soil pH and lime requirement sensing system and the creative design of the system.The final section relates to the management of acid soil by liming. Chapter eight describes the development ofempirical deterministic models for rapid predictions of lime requirement. The response surface models arebased on soil:lime incubations, pHbuffer measurements and the selection of target pH values. These models aremore accurate and more practical than more conventional techniques, and may be more suitably incorporatedinto the spatial decision-support system of the proposed real-time continuous system for the management ofacid soil. Chapter nine presents a glasshouse liming experiment that was used to authenticate the limerequirement model derived in the previous chapter. It also presents soil property interactions and soil-plantrelationships in acid and ameliorated soil, to compare the effects of no lime applications, single-rate andvariable-rate liming. Chapter X presents a methodology for modelling crop yields in the presence ofuncertainty. The local uncertainty about soil properties and the uncertainty about model parameters wereaccounted for by using indicator kriging and Latin Hypercube Sampling for the propagation of uncertaintiesthrough two regression functions; a yield response function and one that equates resultant pH after theapplication of lime. Under the assumptions and constraints of the analysis, single-rate liming was found to bethe best management option.
6

Role of Accommodation in Clinical Measures of Proximal Vergence

Fenton, Rachel 26 August 2019 (has links)
No description available.
7

Effet de l'angiotensine II sur le transport de calcium par la membrane luminale de tubules proximaux et distaux

Charbonneau, Alain January 2001 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
8

Vad påverkar barns lek? : En sociokulturell studie om barns lek / What influences children's play? : A socio-cultural study of children's play

Kulakova, Oxana January 2015 (has links)
Examensarbetet handlar om vilka faktorer som påverkar barns lek och på vilket sätt samt hur detta kan förstås utifrån ett sociokulturellt perspektiv. I studien används bl.a. två metoder: observationer av barns lek och i intervjuer med barn som komplement till observationerna. Både observationerna och intervjuerna med barnen analyseras utifrån det sociokulturella perspektivet, sammanställs och jämförs med tidigare forskning.
9

Human Multidrug and Toxin Extrusion Protein 1: Symmetry of substrate fluxes

Dangprapai, Yodying January 2011 (has links)
Human multidrug and toxin extrusion 1 (hMATE1) is a major candidate for being the molecular identity of organic cation/proton (OC/H+) exchange activity in the luminal membrane of renal proximal tubules (RPT). Although physiological function of hMATE1 supports luminal OC efflux, the kinetics of hMATE1-mediated OC transport have typically been characterized through measurement of uptake i.e., the interaction between outward-facing hMATE1 and OCs. To examine kinetics of hMATE1-mediated transport in a more physiologically relevant direction i.e., an interaction between inward-facing hMATE1 and cytoplasmic substrates, I measured the time course of hMATE1-mediated efflux of the prototypic MATE1-substrate, [3H]1-methyl-4-phenylpyridinium ([3H]MPP), under a variety of conditions, including different values for intra- and extracellular pH, from CHO cells that stably expressed hMATE1. I showed that an IC50/Ki for interaction between extracellular H+ and outward-facing hMATE1 determined from conventional uptake experiments [12.9 ± 1.23 nM (pH 7.89); n = 9] and from the efflux protocol [14.7 ± 3.45 nM (pH 7.83); n = 3] were not significantly different (P = 0.6). To test a hypothesis that H+ interacts symmetrically with each face of hMATE1, kinetics of interaction between intracellular H+ and inward-facing hMATE1 were determined using the efflux protocol. The IC50 for interaction with H+ was 11.5 nM (pH 7.91), consistent with symmetrical interactions of H+ with the inward-facing and outward-facing aspects of hMATE1. The efflux protocols demonstrated in this study are a potential means to examine kinetics at cytoplasmic face of hMATE1 and also a practical tool to screen uptake of substrates at extracellular face of hMATE1.
10

L'expression des gènes du système rénine angiotensine (SRA) dans les tubules proximaux de rein de rats diabétiques (type I) et de rats spontanément hypertenseurs (SHR)

Fustier, Pierre January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Page generated in 0.0399 seconds