1 |
Studies of the misprocessing mutations R1202D and E1204K in the drug and organic anion transporter, MRP1 (ABCC1) in cultured HEK cellsChan, MARINA 19 November 2013 (has links)
Multidrug resistance protein 1 (MRP1) is a drug and organic anion transporter of the ATP-binding cassette superfamily. Previous studies showed that opposite charge substitutions of Arg1202 or Glu1204 in transmembrane helix (TM) 16 cause a >80% reduction in MRP1 levels when expressed in human embryonic kidney (HEK) cells. These substitutions disrupt the folding and/or assembly of MRP1 which targets it for degradation. Attempts were made to enhance levels of the R1202D and E1204K misprocessing mutants by incubating transfected HEK cells at 30 ºC or 27 ºC. At both temperatures, cells expressed both fully glycosylated and underglycosylated mutants at levels 60–70% lower than wild-type MRP1in cells grown at 37 ºC. The subcellular localization patterns of the two mutants were similar to wild-type MRP1 at all three temperatures, with most of the transporter at the plasma membrane at 37 ºC, and in the endoplasmic reticulum at 30 ºC or 27 ºC. Thus, although poorly expressed, the R1202D and E1204K mutants retained the ability to traffic to the plasma membrane. Attempts were also made to enhance R1202D and E1204K levels by exposing transfected HEK cells to chemical chaperones. Dimethyl sulfoxide and glycerol increased E1204K levels by 20-30% but decreased or had no effect on R1202D and wild-type MRP1. 4-Phenylbutyric acid had little or no effect on either wild-type or mutant MRP1. Thus both mutants were relatively resistant to rescue by chemical chaperones. Finally, a “second-site rescue mutation” approach was taken, guided by an atomic homology model of MRP1. Mutations of Tyr1133 alone decreased MRP1 levels, like R1202D; however, although substituting TM15-Tyr1133 with Phe, His and Ala in R1202D was predicted to re-establish TM15-TM16 bonding interactions, levels of this mutant did not increase. E1204K levels were also not improved by substituting TM17-Val1248 with Asp or Glu although these substitutions were predicted to re-establish TM16-TM17 bonds disrupted in E1204K. These results suggest that the bonding interactions of Arg1202 and Glu1204 with other amino acids predicted by the MRP1 homology model used in this study are insufficient to predict the critical helix-helix interactions necessary for stable MRP1 expression in mammalian cells. / Thesis (Ph.D, Pharmacology & Toxicology) -- Queen's University, 2013-11-19 08:17:31.441
|
2 |
FUNCTIONAL ANALYSIS OF AN α-HELICAL REGION IN THE HUMAN MULTIDRUG AND ORGANIC ANION TRANSPORTER MRP1MOLINSKI, STEVEN 26 April 2010 (has links)
Multidrug resistance protein 1 (MRP1/ABCC1) is a 190 kDa phosphoglycoprotein that mediates the efflux of structurally diverse endo- and xenobiotics across biological membranes, and is known to play roles in drug disposition and resistance. The goal of the present study was to examine the functional importance of the region proximal to transmembrane helix 17 (TM17) of MRP1 by mutational analysis of seven conserved amino acids in this region. Thus, Glu1253, Glu1255, Val1261, Glu1262, Arg1263, Glu1266, and Tyr1267 were initially replaced by Ala, and after expression in HEK293T cells, the properties of the mutant proteins were investigated. All of the mutant proteins were expressed at levels comparable to wild-type MRP1, indicating that these residues are not critical for MRP1 biosynthesis. Vesicular transport assays showed that Ala-substitution of Glu1253 and Glu1262 significantly reduced 17β-estradiol 17-(β-D-glucuronide) (E217βG) and leukotriene C4 (LTC4) transport by 30-75% (p < 0.05), while Ala-substitution of Glu1255 and Glu1266 had no effect. Transport activity of the same-charge mutant E1253D was comparable to wild-type MRP1, while transport by E1262D remained reduced (by 50-75%) (p < 0.05). Kinetic analysis suggests that E1253A and E1262A exhibit reduced E217βG uptake as a result of a decreased uptake affinity (Km), while the reduced transport of E1262D was associated with a reduction in Vmax. Reciprocal mutations of potential interhelical bonding partners of Glu1253 and Glu1262 (Lys1141 and Arg1142, respectively), identified by examination of an atomic homology model of MRP1, did not significantly enhance MRP1 function. This suggests that even if bonding interactions exist between the side-chains of these two pairs of amino acids, the interactions are not exclusive. These findings also suggest that Glu1253 and Glu1262 have unique and complex roles in substrate binding and/or translocation. Ala-substitution of Val1261, Arg1263 and Tyr1267 caused a small reduction in E217βG transport (by 25-35%) (p < 0.05), while reductions in LTC4 transport were somewhat more substantial (by 30-55%) (p < 0.05). In conclusion, these studies have provided the first evidence of the functional importance of anionic residues in the COOH-proximal region of TM17 of MRP1. / Thesis (Master, Pharmacology & Toxicology) -- Queen's University, 2009-09-29 16:54:45.378
|
3 |
Stratégie d'éradication de cellules cancéreuses chimiorésistantes surexprimant le transporteur de drogues MRP1 par des composés activateurs de son activité d’efflux de glutathion / Eradication of chemoresistant cancer cells overexpressing the drug transporter MRP1 using activators of GSH efflux through MRP1Dury, Lauriane 05 November 2015 (has links)
Le transporteur de drogues membranaire MRP1 participe à la résistance des cellules cancéreuses à la chimiothérapie lorsqu’il est surexprimé. Cette surexpression peut être exploitée afin de provoquer l’apoptose sélective de ces cellules, MRP1 devenant leur talon d’Achille : c’est l’effet de sensibilité collatérale (SC). Ainsi, le vérapamil stimule l’efflux médié par MRP1 d’un tripeptide antioxydant indispensable aux cellules, le GSH ou glutathion réduit, et provoque la mort sélective des cellules surexprimant ce transporteur. La recherche d’autres agents de SC comme le vérapamil nous a menés à l’étude de composés flavonoïdiques pouvant induire un efflux rapide et massif de GSH. Parmi ces composés, nous avons identifié un puissant agent de SC des cellules résistantes surexprimant MRP1, le dimère de flavonoïde 4e, candidat très prometteur pour de futures études in vivo. Nous avons déterminé que la surexpression de MRP1 est effectivement responsable de la SC dans les cellules cancéreuses résistantes H69AR, et que l’efflux de GSH se doit d’être massif et prolongé pour induire l’apoptose des cellules. Nous avons montré que cet efflux perturbe l’homéostasie du glutathion et l’état redox des cellules, entraînant un stress oxydatif qui participe au déclenchement de la mort cellulaire. Enfin, nous nous sommes attachés à identifier d’éventuelles cibles secondaires des agents de SC dans les cellules surexprimant MRP1, via l’initiation de l’étude de leur transcriptome et métabolome. La compréhension du mécanisme d’action de ces agents de sensibilité collatérale vise, à terme, à l’éradication des cancers résistants surexprimant MRP1 / The membrane drug transporter MRP1 is involved in the resistance of cancer cells to chemotherapy, when overexpressed. This overexpression can be exploited in order to induce the selective apoptosis of these cells, so that MRP1 becomes their Achilles’ heel: this is called Collateral Sensitivity (CS). Thus verapamil stimulates the MRP1-mediated efflux of GSH (reduced form of glutathione) that is an antioxidant tripeptide essential for cells, and induces the selective death of MRP1- overexpressing cells. Seeking for other CS agents than verapamil led to the study of flavonoid compounds able to induce a massive and rapid efflux of GSH and to the identification of a powerful CS agent of resistant cells overexpressing MRP1, i.e. flavonoid dimer 4e, which is a very promising candidate for in vivo studies. We determined that overexpression of MRP1 is indeed responsible for CS in H69AR resistant cancer cells, and that GSH efflux must be massive and protracted in order to induce cell apoptosis. We showed that this efflux disturbs glutathione homeostasis and cell redox state, which leads to an oxidative stress that is involved in triggering cell death. At last, we sought to identify possible secondary targets of CS agents in MRP1-overexpressing cells, via the initiation of transcriptomic and metabolomic studies. Understanding the mechanism of action of these Collateral Sensitivity agents aims to the eradication of resistant cancers that overexpress MRP1
|
4 |
Multidrug Resistance In Locally Advanced Breast CancerAtalay, Mustafa Can 01 June 2004 (has links) (PDF)
ABSTRACT
MULTIDRUG RESISTANCE IN LOCALLY ADVANCED BREAST CANCER
ATALAY, Mustafa Can
Ph. D., Department of Biotechnology
Supervisor: Prof. Dr. Ufuk GÜ / NDÜ / Z
June 2004, 70 pages
Breast cancer is the most frequently detected cancer among women. Early diagnosis leads to long term survival when the patients are treated with surgery, radiotherapy, chemotherapy, and hormone therapy. Unfortunately, advanced disease could still be encountered in some patients resulting in a poorer prognosis. The primary treatment modality is chemotherapy for this group of patients. Drug resistance is a serious problem resulting in the use of different drugs during chemotherapy and knowing the possibility of resistance before initiating first line chemotherapy may save time and money, and most importantly, may increase patient&rsquo / s survival. Therefore in this study, multidrug resistance is studied in locally advanced breast cancer patients. The breast tissues obtained from 25 patients both before and after chemotherapy were examined for drug resistance. Reverse transcriptase polymerase chain reaction was used for the detection of mdr1 and mrp1 gene expression. In addition, immunohistochemistry technique was used for P-glycoprotein and MRP1 detection. JSB-1 and QCRL-1 monoclonal antibodies were utilized to detect P-glycoprotein and MRP1, respectively.
Five patients were unresponsive to chemotherapy. In four of these patients mdr1 gene expression was induced by chemotherapy where as the fifth patient initially had mdr1 gene expression. In addition, Pgp positivity was detected in 9 patients after chemotherapy. Both the induction of mdr1 gene expression (p< / 0.001) and Pgp positivity (p< / 0.001) during chemotherapy were significantly related with clinical response.
On the other hand, mrp1 gene expression and MRP1 positivity were detected in 68% of the patients before the therapy. After chemotherapy, mrp1 expression increased to 84%. Although 80% of the clinically unresponsive patients had mrp1 gene expression, the relation between mrp1 expression and clinical drug response was not strong.
Thus, it can be concluded that in locally advanced breast cancer mdr1 gene expression during chemotherapy contributed to clinical unresponsiveness. However, mrp1 gene expression did not correlate strongly with the clinical response.
When RT-PCR and immunohistochemistry methods are compared in terms of detection of drug resistance, it seems that both methods gave similar and reliable results.
|
5 |
Dérivés de flavonoïdes et de vérapamil comme ligands des transporteurs MRP1 et ABCG2 : de la conception à l'activité anticancéreuse / Derivatives of flavonoids and verapamil as ligands of MRP1 and ABCG2 transporters : from design to anticancer activityGenoux, Estelle 06 May 2011 (has links)
La résistance aux agents chimiothérapeutiques (Multidrug Resistance ou MDR) est caractérisée par la surexpression de différentes protéines membranaires de type ABC, parmi lesquelles, MRP1 et ABCG2 sont largement impliquées. Ces transporteurs diminuent les concentrations intracellulaires des agents chimiothérapeutiques en augmentant leur efflux de la cellule cancéreuse. Dans le but de contrecarrer cette chimiorésistance, nous avons conçu, synthétisé et étudié des activateurs de MRP1 et des inhibiteurs d'ABCG2. Les activateurs de MRP1 sont des dérivés de flavonoïdes et de vérapamil. Ces activateurs sont capables d'induire un efflux rapide et massif de glutathion cellulaire via MRP1 qui entraîne l'apoptose des cellules cancéreuses. Nous avons également conçu et synthétisé de nouveaux composés, dérivés de chromone, inhibiteurs sélectifs d'ABCG2, afin de restaurer la sensibilité des cellules cancéreuses aux agents chimiothérapeutiques. Mots clés : MRP1, ABCG2, flavonoïdes, analogues de vérapamil, chromones, inhibiteurs, activateurs / Resistance to chemotherapeutic agents (Multidrug Resistance or MDR) is characterized by the overexpression of membrane ABC proteins, such as MRP1 and ABCG2. These transporters decrease intracellular concentrations of chemotherapeutic agents by increasing their efflux from the cancer cell. In order to find effective modulators of drug resistance, we have designed, synthesized and investigated MRP1 activators and ABCG2 inhibitors. We designed and synthesized new derivatives of flavonoids and verapamil as activators of MRP1. These activators are capable of inducing a rapid and massive efflux of intracellular glutathione via MRP1 and causing cells death by apoptosis. We have also designed and synthesized new compounds, derivatives of chromone, as selective inhibitors of ABCG2, to restore sensitivity of cancer cells to chemotherapeutic agents. The biological evaluation of investigated compounds enabled us to identify new activators of MRP1 as well as potent and selective inhibitors of ABCG2. Keywords: MRP1, ABCG2, flavonoids, verapamil analogs, chromone, inhibitors, activators
|
6 |
Exploring MRP1 overexpression as "Achilles Heel" of chemoresistant cancers / Étude de la surexpression du transporteur MRP1 comme talon d’Achille des cancers chimiorésistantsNasr, Rachad 31 January 2018 (has links)
La Multidrug resistance Protein 1 (MRP1) est impliquée dans le phénotype de résistance multiple aux médicaments (MDR) des cellules cancéreuses. Les substrats physiologiques de MRP1 comprennent notamment le glutathion (GSH). Certains médicaments anti-cancéreux tels que la doxorubicine sont co-transportés avec le glutathion. Pour contourner le phénotype MDR induit par MRP1, nous proposons une nouvelle stratégie thérapeutique basée sur la sensibilité collatérale (SC) des cellules résistantes surexprimant MRP1. Certains composés, comme le vérapamil, provoquent la mort sélective des cellules résistantes (les cellules témoins ne sont pas affectées) en stimulant l'efflux du glutathion médié par MRP1. La déplétion intracellulaire très rapide et très forte du glutathion induit probablement un stress oxydatif déclenchant la mort cellulaire. Nous avons identifié de nouveaux agents de sensibilité collatérale puissants in vitro et nous avons montré l'effet du meilleur composé sur la réduction de la croissance des tumeurs chimiorésistantes chez la souris. Nous avons étudié le mécanisme moléculaire d'action des agents de SC et identifié un résidu, localisé dans une région inattendue, impliqué dans la stimulation de l'efflux de glutathion induit par ces molécules / Multidrug resistance Protein 1 (MRP1) is involved in the multidrug resistance (MDR) phenotype of cancer cells. Physiological substrates of MRP1 include glutathione (GSH) and drugs such as doxorubicin are co-transported with glutathione. To circumvent the MDR phenotype induced by MRP1, we propose a new therapeutic strategy based on collateral sensitivity (CS) of resistant cell expressing MRP1, its overexpression becoming the Achilles heel of the cell. Some compounds, like verapamil, act as MRP1 modulators. They trigger selective death of resistant cells (control cells are not affected) by stimulating MRP1-mediated glutathione efflux. The fast and huge intracellular depletion of glutathione probably induces an oxidative stress triggering cell death. We identified new potent collateral sensitivity agents in vitro and we checked the effect of the strongest compound on reducing resistant tumor growth in nude mice. We studied the molecular mechanism of action of CS agents and identified an unexpected residue involved in the stimulation of glutathione efflux induced by these molecules
|
7 |
Dérivés de flavonoïdes et de vérapamil comme ligands des transporteurs MRP1 et ABCG2 : de la conception à l'activité anticancéreuseGenoux, Estelle 06 May 2011 (has links) (PDF)
La résistance aux agents chimiothérapeutiques (Multidrug Resistance ou MDR) est caractérisée par la surexpression de différentes protéines membranaires de type ABC, parmi lesquelles, MRP1 et ABCG2 sont largement impliquées. Ces transporteurs diminuent les concentrations intracellulaires des agents chimiothérapeutiques en augmentant leur efflux de la cellule cancéreuse. Dans le but de contrecarrer cette chimiorésistance, nous avons conçu, synthétisé et étudié des activateurs de MRP1 et des inhibiteurs d'ABCG2. Les activateurs de MRP1 sont des dérivés de flavonoïdes et de vérapamil. Ces activateurs sont capables d'induire un efflux rapide et massif de glutathion cellulaire via MRP1 qui entraîne l'apoptose des cellules cancéreuses. Nous avons également conçu et synthétisé de nouveaux composés, dérivés de chromone, inhibiteurs sélectifs d'ABCG2, afin de restaurer la sensibilité des cellules cancéreuses aux agents chimiothérapeutiques. Mots clés : MRP1, ABCG2, flavonoïdes, analogues de vérapamil, chromones, inhibiteurs, activateurs
|
8 |
LOSS OF MULTIDRUG RESISTANCE-ASSOCIATED PROTEIN 1 (MRP1/ABCC1) POTENTIATES DOXORUBICIN-INDUCED CARDIOTOXICITY IN MICEZhang, Wei 01 January 2015 (has links)
Doxorubicin (DOX) is a broad-spectrum and effective chemotherapeutic agent, but its use in oncologic practice is limited by dose-dependent cumulative cardiotoxicity. DOX-induced cardiotoxicity is in large part due to its ability to cause oxidative stress. Multidrug resistance associated protein 1 (MRP1/ABCC1) is a member of the ATP-binding cassette (ABC) transporter superfamily. By effluxing a wide variety of endogenous and exogenous substrates, Mrp1 plays important physiological roles in multiple tissues and also protects normal tissues against toxicants. However, the role of MRP1 in heart is largely unknown.
The role of Mrp1 in DOX-induced cardiotoxicity was investigated in Mrp1 null (Mrp1-/-) and their C57BL (WT) littermates. Chronic DOX caused body weight loss and hemotoxicity, and these adverse effects were significantly exacerbated in Mrp1-/- vs WT mice. Importantly, loss of Mrp1 potentiated DOX-induced cardiotoxicity, presenting as worsened cardiac function and more cellular apoptosis in DOX treated Mrp1-/- mice. Mrp1 also protected neonatal mouse cardiomyocytes (CM) and cardiac fibroblasts (CF) culture against DOX cytotoxicity in vitro. This was demonstrated by the decreased cell survival, more apoptosis and more DNA damage in DOX treated Mrp1-/- vs WT cells.
In addition, the effects of deletion of Mrp1 was studied on glutathione (GSH)/glutathione disulfide (GSSG) homeostasis, glutathione conjugate of 4-hydroxy-2-nonenal (GS-HNE) accumulation, protein oxidative damage and expression of antioxidant enzymes. Loss of Mrp1 led to significantly higher GSH and GSSG basal levels in heart. Following DOX treatment, Mrp1-/- CM and CF showed increased GSH and GSSG levels vs WT cells. Meanwhile, DOX increased expression of the GSH synthesis enzymes in Mrp1-/- but not WT cells. Thus, increased GSH synthesis may contribute to the further increase in the GSH pool in DOX-treated Mrp1-/- cells. DOX induced comparable increases of GS-HNE concentration in WT and Mrp1-/- mice hearts. Finally, expression of extracellular superoxide dismutase (ECSOD/SOD3) was significantly lower in Mrp1-/- vs. WT CM treated with either saline or DOX.
In summary, this study is the first to document a protective role of Mrp1 in DOX-induced cardiotoxicity. It gives critical information regarding the potential adverse sequelae of introduction of MRP1 inhibitors as adjuncts to clinical chemotherapy of multidrug resistant tumors.
|
9 |
Eradication ciblée des cellules cancéreuses chimiorésistantes par des activateurs du transporteur de drogues MRP1 : mécanismes moléculaires et cellulaires / Target eradication of chemioresistant cancer cells using MRP1 activators : molecular and cellular mechanismsLorendeau, Doriane 06 December 2012 (has links)
La surexpression de pompes d'efflux par les cellules cancéreuses permet l'élimination d'agents cytotoxiques, induisant alors une résistance à la chimiothérapie. Trois transporteurs ABC sont principalement impliqués dans cette résistance : P-gp/ABCB1, MRP1-ABCC1 et BCRP/ABCG2. La surexpression des ces transporteurs peut également être le "talon d'Achille" des cellules cancéreuses résistantes en les sensibilisant à certains composés. Ce phénomène, appelé sensibilité collatérale, pourrait constituer un nouvel outil thérapeutique conter les les cancers intrinséquement ou rendus résistants en éliminant sélectivement les cellules cancéreuse résistances. Ainsi, le S-vérapamil provoque la mort sélective par apoptose des cellules surexprimant suite à l'extrusion rapide et massive du glutathion 5GSH) intracellulaire par MRP1. Nous avons démontré que le vérapamil est capable de dépléter s"lectivement de leur contenu en GSH les tumeurs de cancer du poumon H69AR, MRP1 positives et résistantes, dès 3 heures d'exposition aiguë. Le vérapamil étant fortemnt carditoxique, nous avons développé de nouveaux agents de sensibilité collatérale, plus sélectif que le vérapamil, comme le xanthone 9, le flavonoïde 36 et le dimère de flavonoïde 4e. Enfin, grâce à l'étude de chimères MRP1/MRP2, nous avons démontré que la région comprenant les boucles L0 et L1-TM12 pourrait constituter les sites modualteurs et substrat du GSH sur MRP1. / Resistance to chemotherapy is partly due to efflux pumps expressed in the plasma membrane, which prevent the accumulation of anticancer drugs in tumor cells. Three human ABC transporters are particulary involved in this chemoresistance : P-gp/ABCB1, MRP1-ABCC1 and BCRP/ABCG2. The overexpression of these trnasporters can also be an "Achille heel" for resistant cancer cells by sensitizing them to various drugs. This phenomenom, called collateral sensitivity, could constitute a new chemotherapy to eradicate cancers becoming resistant or cancer which ara resistant prioir to any treatment. Thus, S-verapamil triggers selective apoptosis of MRP1 overexpressing correlated to the massive and rapide extrusion of cellular glutathione by MRP1. We showed that verapamil is able to selectivity deprive H69AR MRP1 positive and resistant lung tumors, as soon as 3 hours of acute exposure. Verapamil being highly cardiotoxic, we have developed new collateral sensitivity drugs, more selective than verapamil, such as xanthone 9, flavonoïdd 36 and flavonoïd dimer 4e. Finally, thanks to the characterization of MRP1/MRP2 chimera, we showed that the MRP1 region including the intracellular loop L0 L1-TM12 might constitute the substrate and the modulator binding sites for GSH.
|
10 |
Conception et développement de nouveaux ligands des transporteurs ABCG2 et MRP1 dans le cadre de la résistance à de multiples drogues anticancéreuses. / Design and development of new ligands of ABCG2 and MRP1 transporters targeting the Multidrug Resistance (MDR).Lecerf - Schmidt, Florine 23 October 2015 (has links)
La résistance à de multiples drogues anticancéreuses (Multidrug Resistance ou MDR) est actuellement un problème majeur dans le cas de nombreuses chimiothérapies. Parmi les mécanismes à l'origine de la MDR, la surexpression de protéines membranaires de type ABC est le plus étudié. Les deux protéines ABCG2 et MRP1 sont parmi les protéines membranaires impliquées. Ces transporteurs sont capables d'induire un efflux massif des agents anticancéreux hors des cellules cancéreuses, réduisant ainsi leur concentration intracellulaire et donc leur efficacité thérapeutique. Afin de contrecarrer cette chimiorésistance, notre objectif s'est concentré sur le développement de nouveaux modulateurs d'ABCG2 et de MRP1. Dans ce cadre, de nouveaux inhibiteurs d'ABCG2, dérivés de chromones, ont été conçus afin de restaurer la sensibilité des cellules cancéreuses aux agents anticancéreux. De plus, la modélisation de modèles pharmacophores nous a permis d'obtenir de nouvelles informations quant aux interactions ABCG2-ligands. Les nouveaux modulateurs de MRP1, dérivés de flavonoïdes, sont capables quant à eux d'induire un efflux massif de glutathion cellulaire via MRP1, sans être transportés eux même, entraînant l'apoptose sélective des cellules cancéreuses surexprimant le transporteur. / Resistance to chemotherapeutic agents (Multidrug Resistance or MDR) is a major hurdle for anticancer chemotherapy. Among different mechanisms involved in MDR, the overexpression of membrane proteins belonging to ABC family is the most relevant one. Among such proteins, ABCG2 and MRP1 are considered to play an important role. These transporters are able to induce a massive efflux of anticancer agents out of the cancer cells, reducing their intracellular concentration and their therapeutic potency. In order to overcome this resistance, novel modulators of ABCG2 and MRP1 were designed, synthetized and tested biologically. In this context, new derivatives of chromones as inhibitors of ABCG2 were developed in order to restore sensitivity of cancer cells to chemotherapeutic agents. In addition, molecular modelling of new pharmacophores allowed us to gather new data exploring ABCG2-ligand interactions. New modulators of MRP1, derivatives of flavonoids, are able to induce a massive efflux of intracellular glutathione that is mediated by the protein, without being transported and causing selective apoptosis of cancer cells overexpressing MRP1.
|
Page generated in 0.0412 seconds