• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Generalized vector equilibrium problems and algorithms for variational inequality in hadamard manifolds / Problemas de equilíbrio vetoriais generalizados e algoritmos para desigualdades variacionais em variedades de hadamard

Batista, Edvaldo Elias de Almeida 20 October 2016 (has links)
Submitted by Jaqueline Silva (jtas29@gmail.com) on 2016-12-09T17:10:49Z No. of bitstreams: 2 Tese - Edvaldo Elias de Almeida Batista - 2016.pdf: 1198471 bytes, checksum: 88d7db305f0cfe6be9b62496a226217f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2016-12-09T17:11:03Z (GMT) No. of bitstreams: 2 Tese - Edvaldo Elias de Almeida Batista - 2016.pdf: 1198471 bytes, checksum: 88d7db305f0cfe6be9b62496a226217f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2016-12-09T17:11:03Z (GMT). No. of bitstreams: 2 Tese - Edvaldo Elias de Almeida Batista - 2016.pdf: 1198471 bytes, checksum: 88d7db305f0cfe6be9b62496a226217f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-10-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this thesis, we study variational inequalities and generalized vector equilibrium problems. In Chapter 1, several results and basic definitions of Riemannian geometry are listed; we present the concept of the monotone vector field in Hadamard manifolds and many of their properties, besides, we introduce the concept of enlargement of a monotone vector field, and we display its properties in a Riemannian context. In Chapter 2, an inexact proximal point method for variational inequalities in Hadamard manifolds is introduced, and its convergence properties are studied; see [7]. To present our method, we generalize the concept of enlargement of monotone operators, from a linear setting to the Riemannian context. As an application, an inexact proximal point method for constrained optimization problems is obtained. In Chapter 3, we present an extragradient algorithm for variational inequality associated with the point-to-set vector field in Hadamard manifolds and study its convergence properties; see [8]. In order to present our method, the concept of enlargement of maximal monotone vector fields is used and its lower-semicontinuity is established to obtain the convergence of the method in this new context. In Chapter 4, we present a sufficient condition for the existence of a solution to the generalized vector equilibrium problem on Hadamard manifolds using a version of the KnasterKuratowski-Mazurkiewicz Lemma; see [6]. In particular, the existence of solutions to optimization, vector optimization, Nash equilibria, complementarity, and variational inequality is a special case of the existence result for the generalized vector equilibrium problem. / Nesta tese, estudamos desigualdades variacionais e o problema de equilíbrio vetorial generalizado. No Capítulo 1, vários resultados e definições elementares sobre geometria Riemanniana são enunciados; apresentamos o conceito de campo vetorial monótono e muitas de suas propriedades, além de introduzir o conceito de alargamento de um campo vetorial monótono e exibir suas propriedades em um contexto Riemanniano. No Capítulo 2, um método de ponto proximal inexato para desigualdades variacionais em variedades de Hadamard é introduzido e suas propriedades de convergência são estudadas; veja [7]. Para apresentar o nosso método, generalizamos o conceito de alargamento de operadores monótonos, do contexto linear ao contexto de Riemanniano. Como aplicação, é obtido um método de ponto proximal inexato para problemas de otimização com restrições. No Capítulo 3, apresentamos um algoritmo extragradiente para desigualdades variacionais associado a um campo vetorial ponto-conjunto em variedades de Hadamard e estudamos suas propriedades de convergência; veja [8]. A fim de apresentar nosso método, o conceito de alargamento de campos vetoriais monótonos é utilizado e sua semicontinuidade inferior é estabelecida, a fim de obter a convergência do método neste novo contexto. No Capítulo 4, apresentamos uma condição suficiente para a existência de soluções para o problema de equilíbrio vetorial generalizado em variedades de Hadamard usando uma versão do Lema Knaster-Kuratowski-Mazurkiewicz; veja [6]. Em particular, a existência de soluções para problemas de otimização, otimização vetorial, equilíbrio de Nash, complementaridade e desigualdades variacionais são casos especiais do resultado de existência do problema de equilíbrio vetorial generalizado.
2

Vários algoritmos para os problemas de desigualdade variacional e inclusão / On several algorithms for variational inequality and inclusion problems

Millán, Reinier Díaz 27 February 2015 (has links)
Submitted by Erika Demachki (erikademachki@gmail.com) on 2015-05-21T19:19:51Z No. of bitstreams: 2 Tese - Reinier Díaz Millán - 2015.pdf: 3568052 bytes, checksum: b4c892f77911a368e1b8f629afb5e66e (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Erika Demachki (erikademachki@gmail.com) on 2015-05-21T19:21:31Z (GMT) No. of bitstreams: 2 Tese - Reinier Díaz Millán - 2015.pdf: 3568052 bytes, checksum: b4c892f77911a368e1b8f629afb5e66e (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-05-21T19:21:31Z (GMT). No. of bitstreams: 2 Tese - Reinier Díaz Millán - 2015.pdf: 3568052 bytes, checksum: b4c892f77911a368e1b8f629afb5e66e (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2015-02-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Nesta tese apresentamos v arios algoritmos para resolver os problemas de Desigualdade Variacional e Inclus~ao. Para o problema de desigualdade variacional propomos, no Cap tulo 2 uma generaliza c~ao do algoritmo cl assico extragradiente, utilizando vetores normais n~ao nulos do conjunto vi avel. Em particular, dois algoritmos conceituais s~ao propostos e cada um deles cont^em tr^es variantes diferentes de proje c~ao que est~ao relacionadas com algoritmos extragradientes modi cados. Duas buscas diferentes s~ao propostas, uma sobre a borda do conjunto vi avel e a outra ao longo das dire c~oes vi aveis. Cada algoritmo conceitual tem uma estrat egia diferente de busca e tr^es formas de proje c~ao especiais, gerando tr^es sequ^encias com diferente e interessantes propriedades. E feito a an alise da converg^encia de ambos os algoritmos conceituais, pressupondo a exist^encia de solu c~oes, continuidade do operador e uma condi c~ao mais fraca do que pseudomonotonia. No Cap tulo 4, n os introduzimos um algoritmo direto de divis~ao para o problema variacional em espa cos de Hilbert. J a no Cap tulo 5, propomos um algoritmo de proje c~ao relaxada em Espa cos de Hilbert para a soma de m operadores mon otonos maximais ponto-conjunto, onde o conjunto vi avel do problema de desigualdade variacional e dado por uma fun c~ao n~ao suave e convexa. Neste caso, as proje c~oes ortogonais ao conjunto vi avel s~ao substitu das por proje c~oes em hiperplanos que separam a solu c~ao da itera c~ao atual. Cada itera c~ao do m etodo proposto consiste em proje c~oes simples de tipo subgradientes, que n~ao exige a solu c~ao de subproblemas n~ao triviais, utilizando apenas os operadores individuais, explorando assim a estrutura do problema. Para o problema de Inclus~ao, propomos variantes do m etodo de divis~ao de forward-backward para achar um zero da soma de dois operadores, a qual e a modi ca c~ao cl assica do forwardbackward proposta por Tseng. Um algoritmo conceitual e proposto para melhorar o apresentado por Tseng em alguns pontos. Nossa abordagem cont em, primeramente, uma busca linear tipo Armijo expl cita no esp rito dos m etodos tipo extragradientes para desigualdades variacionais. Durante o processo iterativo, a busca linear realiza apenas um c alculo do operador forward-backward em cada tentativa de achar o tamanho do passo. Isto proporciona uma consider avel vantagem computacional pois o operador forward-backward e computacionalmente caro. A segunda parte do esquema consiste em diferentes tipos de proje c~oes, gerando sequ^encias com caracter sticas diferentes. / In this thesis we present various algorithms to solve the Variational Inequality and Inclusion Problems. For the variational inequality problem we propose, in Chapter 2, a generalization of the classical extragradient algorithm by utilizing non-null normal vectors of the feasible set. In particular, two conceptual algorithms are proposed and each of them has three di erent projection variants which are related to modi ed extragradient algorithms. Two di erent linesearches, one on the boundary of the feasible set and the other one along the feasible direction, are proposed. Each conceptual algorithm has a di erent linesearch strategy and three special projection steps, generating sequences with di erent and interesting features. Convergence analysis of both conceptual algorithms are established, assuming existence of solutions, continuity and a weaker condition than pseudomonotonicity on the operator. In Chapter 4 we introduce a direct splitting method for solving the variational inequality problem for the sum of two maximal monotone operators in Hilbert space. In Chapter 5, for the same problem, a relaxed-projection splitting algorithm in Hilbert spaces for the sum of m nonsmooth maximal monotone operators is proposed, where the feasible set of the variational inequality problem is de ned by a nonlinear and nonsmooth continuous convex function inequality. In this case, the orthogonal projections onto the feasible set are replaced by projections onto separating hyperplanes. Furthermore, each iteration of the proposed method consists of simple subgradient-like steps, which does not demand the solution of a nontrivial subproblem, using only individual operators, which explores the structure of the problem. For the Inclusion Problem, in Chapter 3, we propose variants of forward-backward splitting method for nding a zero of the sum of two operators, which is a modi cation of the classical forward-backward method proposed by Tseng. The conceptual algorithm proposed here improves Tseng's method in many instances. Our approach contains rstly an explicit Armijo-type line search in the spirit of the extragradient-like methods for variational inequalities. During the iterative process, the line search performs only one calculation of the forward-backward operator in each tentative for nding the step size. This achieves a considerable computational saving when the forward-backward operator is computationally expensive. The second part of the scheme consists of special projection steps bringing several variants.

Page generated in 0.0661 seconds