• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluating the Impacts of Eastern North Pacific Tropical Cyclones on North America Utilizing Remotely Sensed and Reanalysis Data

Wood, Kimberly January 2012 (has links)
The eastern North Pacific Ocean has the highest density of tropical cyclone genesis events of any tropical basin in the world, and many of these systems form near land before moving westward. However, despite the level of tropical cyclone activity in this basin, and the proximity of the main genesis region to land, tropical cyclone behavior in the eastern North Pacific has been relatively unexplored. When synoptic conditions are favorable, moisture from northward-moving tropical cyclones can be advected into northern Mexico and the southwestern United States, often leading to the development of summertime thunderstorms during the North American monsoon season. An interaction with a mid-latitude trough produces the most rainfall, and the spatial variability of precipitation is greatly affected by the complex topography of the region. Moisture can be advected from a tropical cyclone around the subtropical ridge in place for much of the eastern North Pacific hurricane season and contribute to precipitation. This ridge, when it extends westward over the Pacific Ocean, can also prevent tropical cyclone moisture from impacting the southwestern United States. Northward-moving tropical cyclones often enter an environment with decreasing sea surface temperatures, increasing vertical wind shear, and meridional air temperature and moisture gradients. These key ingredients for extratropical transition are generally present in the eastern North Pacific, but the subtropical ridge prevents many named systems from moving northward, and only 9% of eastern North Pacific tropical cyclones from 1970 to 2011 complete ET according to cyclone phase space. However, over half of the systems that do not complete ET dissipate as cold core cyclones, a structural change that has yet to be explored in other tropical basins. It is difficult to estimate tropical cyclone intensity in a vast ocean area with few direct measurements available. The deviation angle variance technique, an objective method independent of the current techniques widely used today, was successfully applied to seven years of eastern North Pacific tropical cyclones. The RMS error of 13.5 kt for all seven years is comparable to the RMS errors found for other basins.

Page generated in 0.1275 seconds