1 |
C��lculos de dosimetr��a interna para emisores de part��culas beta-gamma utilizando el m��todo del kernel puntual y t��cnicas de imagen molecularGonz��lez Torres, Mar��a Jos�� 13 May 2011 (has links)
No description available.
|
2 |
En andra chans : En granskning av 2014 års lagförslag gällande F-skuldsanering för seriösa företagareElfvingsson, Matilda January 2015 (has links)
No description available.
|
3 |
Properties of stellar activity in F starsVarsik, John Roger January 1987 (has links)
Typescript. / Bibliography: leaves 174-180. / Photocopy. / Microfilm. / xiii, 180 leaves, bound ill. 29 cm
|
4 |
Statische und dynamische Lichtstreuung an Lösungen von AktinfilamentenStorz, Tobias-Alexander. January 2001 (has links) (PDF)
München, Techn. Univ., Diss., 2001. / Computerdatei im Fernzugriff.
|
5 |
Statische und dynamische Lichtstreuung an Lösungen von AktinfilamentenStorz, Tobias-Alexander. January 2001 (has links) (PDF)
München, Techn. Univ., Diss., 2001. / Computerdatei im Fernzugriff.
|
6 |
Employer branding společnosti se zaměřením na atraktivitu zaměstnavatele vůči studentům a absolventům / eSlivka, Matúš January 2016 (has links)
No description available.
|
7 |
Antenna Study for IoT DevicesHedlund, Rickard January 2016 (has links)
This thesis investigates the possibility to design printed circuit board (PCB) antennas with a maximum area size of 30 x 30 mm^2 at 2.4 GHz. The resulting antenna parameters are compared to those of a commercial, more costly chip antenna, i.e., Antenova A5645. The antenna parameters that were evaluated were the antenna efficiency, the return loss and the voltage standing wave ratio(VSWR). Three types of antennas were firstly selected to be designed, i.e., the patch antenna, Inverted-F antenna and Meandered Inverted-F antenna. Using basic antenna theory, general RF knowledge and through simulations performed with the dedicated software tool ADS, five antenna designs were finally selected to be manufactured. After manufacturing, the antennas were tested in a radiation chamber. At 2.4 GHz, the best simulated antenna efficiency was 78.7%, the return loss was -33.91 dB and the VSWR was 1.041. Not all these simulated values have been proven experimentally through measurements due to insufficient equipment at the moment of performing the experiments. However, the three types of antennas were evaluated in the radiation chamber for their polarization and these measurement results are very close to the equivalent simulation results.
|
8 |
Game Colourings of GraphsChang, Hung-yung 09 August 2007 (has links)
A graph function $f$ is a mapping which assigns each graph $H$
a positive integer $f(H)
leq |V(H)|$ such that $f(H)=f(H')$ if $H$ and $H'$ are
isomorphic. Given a graph function $f$ and a graph $G$, an
$f$-colouring of $G$ is a mapping $c: V(G) o
mathbb{N}$ such that every subgraph $H$ of $G$ receives at least
$f(H)$ colours, i.e., $|c(H)| geq f(H)$. The $f$-chromatic
number, $chi(f,G)$, is the minimum number of colours used in an
$f$-colouring of $G$. The $f$-chromatic number of a graph is a
natural generalization of the chromatic number of a graph
introduced by Nev{s}etv{r}il and Ossena de Mendez. Intuitively,
we would like to colour the vertices of a graph $G$ with minimum
number of colours subject to the constraint that the number of
colours assigned to certain subgraphs must be large enough. The
original chromatic number of a graph and many of its
generalizations are of this nature. For example, the chromatic
number of a graph is the least number of colours needed to colour
the vertices of the graph so that any subgraph isomorphic to
$K_2$ receives $2$ colours. Acyclic chromatic number of a graph is
the least number of colours needed to colour the vertices of the
graph so that any subgraph isomorphic to $K_2$ receives $2$
colours, and each cycle receives at least $3$ colours.
This thesis studies the game version of $f$-colouring of graphs.
Suppose $G$ is a graph and $X$ is a set of colours. Two players,
Alice and Bob, take turns colour the vertices of $G$ with colours
from the set $X$. A partial colouring of $G$ is legal (with respect
to graph function $f$) if for any subgraph $H$ of $G$, the sum of
the number of colours used in $H$ and the number of uncoloured
vertices of $H$ is at least $f(H)$. Both Alice and Bob must colour
legally (i.e., the partial colouring produced needs to be legal).
The game ends if either all the vertices are coloured or there are
uncoloured vertices but there is no legal colour for any of the
uncoloured vertices. In the former case, Alice wins the game. In the
latter case, Bob wins the game. The $f$-game chromatic number of
$G$, $chi_g(f, G)$, is the least number of colours that the colour
set $X$ needs to contain so that Alice has a winning strategy.
Observe that if $|X| = |V(G)|$, then Alice always wins. So the
parameter $chi_g(f,G)$ is well-defined. We define the $f$-game
chromatic index on a graph $G$, $chi'(f,G)$, to be the $f$-game
chromatic number on the line graph of $G$.
A natural problem concerning the $f$-game chromatic number of graphs
is for which graph functions $f$, the $f$-game chromatic number of
$G$ is bounded by a constant for graphs $G$ from some natural
classes of graphs. In case the $f$-game chromatic number of a class
${cal K}$ of graphs is bounded by a constant, one would like to
find the smallest such constant. This thesis studies the $f$-game
chromatic number or index for some special classes of graphs and for
some special graph functions $f$. The graph functions $f$ considered
are the following graph functions:
1. The $d$-relaxed function, ${
m Rel}_d$, is defined as ${
m Rel}_d(K_{1,d+1})=2$ and ${
m Rel}_d(H)=1$ otherwise.
2. The acyclic function, ${
m Acy}$, is defined as ${
m Acy}(K_2)=2$ and ${
m Acy}(C_n)=3$ for any $n geq 3$ and
${
m Acy}(H)=1$ otherwise.
3. The $i$-path function, ${
m Path}_i$, is defined as ${
m Path}_i(K_2)=2$ and
${
m Path}_i(P_i)=3$ and ${
m Path}_i(H)=1$ otherwise, where $P_i$
is the path on $i$ vertices.
The classes of graphs considered in the thesis are outerplanar
graphs, forests and the line graphs of $d$-degenerate graphs. In
Chapter 2, we discuss the acyclic game chromatic number of
outerplanar graphs. It is proved that for any outerplanar graph $G$,
$chi_g({
m Acy},G) leq 7$. On the other hand, there is an
outerplanar graph $G$ for which $chi_g({
m Acy},G) = 6$. So the
best upper bound for $chi_g({
m Acy},G)$ for outerplanar graphs is
either $6$ or $7$. Moreover, we show that for any integer $n$, there
is a series-parallel graph $G_n$ with $chi_g({
m Acy}, G_n)
> n$.
In Chapter 3, we discuss the ${
m Path}_i$-game chromatic number
for forests. It is proved that if $i geq 8$, then for any forest
$F$, $chi_g({
m Path}_i, F) leq 9$. On the other hand, if $i
leq 6$, then for any integer $k$, there is a tree $T$ such that
$chi_g({
m Path}_i, T) geq k$.
Chapter 4 studies the $d$-relaxed game chromatic indexes of
$k$-degenerated graphs. It is proved that if $d geq 2k^2 + 5k-1$
and $G$ is $k$-degenerated, then $chi'_{
m g}({
m Rel}_d,G)
leq 2k + frac{(Delta(G)+k-1)(k+1)}{d-2k^2-4k+2}$. On the other hand,
for any positive integer $ d leq Delta-2$, there is a tree $T$
with maximum degree $Delta$ for which $chi'_g({
m Rel}_d, T)
geq frac{2Delta}{d+3}$. Moreover, we show that $chi'_g({
m Rel}_d, G) leq
2$ if $d geq 2k + 2lfloor frac{Delta(G)-k}{2}
floor +1$ and
$G$ is a $k$-degenerated graph.
|
9 |
Funktionell Programmering : En framtidsprognosHolmer, Mattias January 2011 (has links)
Trenden inom systemutveckling och programutveckling går mot ett mer användande av multi programmeringsparadigmer. Funktionell programmering har fått mer uppmärksamhet på senare tid och utvecklingen tycks över lag gå än mer åt det deklarativa hållet där programmeraren fokuserar mer på vad som skall utföras och inte lika mycket på hur. Under en tid har det objektorienterade paradigmet varit dominerande, kommer det vara så i framtiden? Funktionell programmering skiljer sig från imperativ programmering, speciellt i abstraktionsnivå. Microsoft har implementerat programmeringsspråket F# i Visual Studio 2010. F# är ett funktionellt programmeringsspråk som även stödjer objektorienterad och imperativ programmering. Kan F# få funktionell programmering som paradigm att växa? Kommer F# få något genomslag i programmeringsvärlden? Genom att höra experter och företags åsikter vill vi framställa en prognos för F#. Vi vill ta reda på vad erfarna programmerare tycker om F# och vad de tror om framtiden. Att förutsäga framtiden är något som är väldigt svårt, om inte omöjligt. Prognoser stämmer således nästan aldrig. Det kan dock fortfarande vara av värde och frambringa olika effekter på utvecklingen. Resultaten av vår undersökning pekar på en ljus framtid för F# som programmeringsspråk och funktionell programmering som paradigm. F# är ett populärt språk, bland dem som provat på det och kan effektivisera verksamheten för många företag. I denna skrift undersöker vi F# som språk - med några av dess mest ansett användbara aspekter - och funktionell programmering i allmänhet. / The trend in systems- and program-development has changed direction towards an increase in the usage of multi-programming paradigms. The attention put on Functional programming have increased lately and the development seems to move towards a more declarative style, where the programmer focuses more on how something should be done, than on what should be done. For awhile now, the objectoriented paradigm have been the dominant programming paradigm, but will this hold in the future? Functional programming differs from imperative programming, especially on the abstract level. Microsoft has implemented the programming language F# in Visual Studio 2010. F# is a functional programming language that also supports both objectoriented and imperative programming. Will F# cause the functional programming paradigm to grow? Will F# cause some sort of impact upon the programming world? By listening to the views of experts and businessmen alike we want to implement a prognosis about the future of F#. We want to know what experienced programmers think about F# and its future. Although, predicting the future is hard, if not impossible. Even though future predictions often are wrong, they can still bring forth important views and aspects, effecting the development, evolution or view on the target for the prediction. The result of our research points to a bright future for F# as a programming language and function programming as a paradigm. F# is a very popular language amongst those that have tried it and it has the possibility to streamline the operations in many businesses. In this paper we investigate F# as a language – with some of it's most useful aspects – and functional programming in general.
|
10 |
The unknown, or, Lays of the forest by William F. Hawley a scholarly edition /Hawley, W. F. Zezulka-Mailloux, Gabrielle E. M. January 1900 (has links) (PDF)
Gabrielle E.M. Zezulka-Mailloux's Thesis (M.A.)--University of Western Ontario, 2000. / Includes bibliographical references.
|
Page generated in 0.0433 seconds