• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Facial Expression Cloning with Fuzzy Membership Functions

Santos, Patrick John 24 October 2013 (has links)
This thesis describes the development and experimental results of a system to explore cloning of facial expressions between dissimilar face models, so new faces can be animated using the animations from existing faces. The system described in this thesis uses fuzzy membership functions and subtractive clustering to represent faces and expressions in an intermediate space. This intermediate space allows expressions for face models with different resolutions to be compared. The algorithm is trained for each pair of faces using particle swarm optimization, which selects appropriate weights and radii to construct the intermediate space. These techniques allow the described system to be more flexible than previous systems, since it does not require prior knowledge of the underlying implementation of the face models to function.
2

Facial Expression Cloning with Fuzzy Membership Functions

Santos, Patrick John January 2013 (has links)
This thesis describes the development and experimental results of a system to explore cloning of facial expressions between dissimilar face models, so new faces can be animated using the animations from existing faces. The system described in this thesis uses fuzzy membership functions and subtractive clustering to represent faces and expressions in an intermediate space. This intermediate space allows expressions for face models with different resolutions to be compared. The algorithm is trained for each pair of faces using particle swarm optimization, which selects appropriate weights and radii to construct the intermediate space. These techniques allow the described system to be more flexible than previous systems, since it does not require prior knowledge of the underlying implementation of the face models to function.

Page generated in 0.0585 seconds