• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 39
  • 14
  • 10
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 121
  • 121
  • 39
  • 35
  • 34
  • 31
  • 26
  • 17
  • 16
  • 14
  • 13
  • 12
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Influence of intra- and interspecific competition on timber quality of European beech

Höwler, Kirsten 10 September 2020 (has links)
No description available.
82

Analysis of the mechanical behavior of wood by means of digital image correlation

Brabec, Martin January 2016 (has links)
The full-field optical techniques such as e.g. a digital image correlation are capable to fully reflect the natural wood heterogeneity. Therefore, this thesis aspires to contribute to the experimental mechanics of wood and wood-based composites by the implementation of the full-field optical technique based on the digital image correlation to the standard mechanical tests. A supplementation of the conventional displacement sensors should help to obtain more precise mechanical characteristics and to do more sophisticated analyses of the deformation behaviour of wood and wood-based composites. The experimental part of the thesis is divided into the five independent case studies listed as the original papers. The measurements were carried out on the most wide-spread wood species in central Europe such as European beech (Fagus sylvatica, L.) and Norway spruce (Picea abies, L. Karst). Beside the solid wood, the new wood-based sandwich structure, which consists of a core made from birch plywood and the particleboard facings, was investigated too. The loading of the samples was carried out using of the standard mechanical tests such as tension, compression, three-point bending and torsion test. In the first study, the full-field deformation data were used to indentify reasons for the non-standard deformation behaviour of spruce and beech wood during compression parallel to grain. Reason for this was recognized in the abrubt compression of damage zones located near the compression plates, which induced the expansion of the middle zone located between them. The second study aimed to find out neutral axis position in native and thermally modified beech wood during the conventional three-point bending test. The relative neutral axis position was obtained from mutual position of the neutral axis and centroidal axis, which was determined based on the appropriate image processing methods. It was found that the neutral axis and centroidal sample axis are almost coincident. Objective of the third study was to determine both longitudinal shear moduli of beech wood with help of the full-field shear strains, obtained from a single torsion test, together with use of the appropriate analytical solutions for the calculation of the stress distribution within the radial and tangential direction on the longitudinal-radial and longitudinal-tangential sample surfaces. Both longitudinal shear moduli increasingly mutually differed as the load increases. Within the fourth study, verification of the elastic material model used in finite-element analyses was carried out with help of full-field deformations induced around notches within dog-bone shaped sample during the uniaxial tension. Great correlation was found between numerically predicted and experimentally measured strain data sets for both longitudinal-radial and longitudinal-tangential shear planes. The fifth study dealed with the characterization of elastic deformation behaviour of newly developed wood-based composite with a sandwich structure. Based on the full-field strain analysis the local strain concentrations were identified. They took place within the core during flatwise compression, and within the facings, when the edgewise compression test was done. A variety of presented results confirmed widespread applicability of optical methods in the mechanics of materials. Therefore, the utilization of full-field optical method based on digital image correlation in experimental mechanics of wood and wood-based composites can be highly recommended.
83

Fyziologické, anatomické a morfologické reakce sazenic buku lesního a smrku ztepilého na stres suchem a následnou závlahu =:Physiological, anatomical and morphological response of European beech and Norway spruce seedlings on drought stress and subsequent irrigation /

Hájíčková, Martina January 2019 (has links)
European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst) are the most abundant deciduous and coniferous tree species in the Czech Republic. Both beech and spruce are due to their sensitivity to drought threatened by ongoing climate change that can cause deterioration of their vitality in current habitats. Drought periods are already becoming longer and stronger and previously rare spring droughts become more frequent. The dissertation thesis is based on experiments with Norway spruce and European beech seedling exposed to different levels of drought (well-watered, moderate drought and severe drought). After three to six weeks of drought, the seedlings were well-watered for another two weeks and their response of physiology, anatomy and morphology was evaluated. Experiments were conducted with seedlings at early stage of leaf development and with fully developer leaves to compare response to spring and summer drought. Overall drought response was stronger in spring. Both spring and summer drought reduced gas exchange parameters (in both beech and spruce seedlings up to 100 %), hydraulic conductivity and less strongly also fluorometric parameters. Efficiency of water use in stressed seedlings decreased in spring, while it increased in summer. Shoot and leaves biomass was more reduced by drought than root biomass. Tree-ring width decreased about two times more in beech seedlings than in spruce seedlings. Vessel and tracheids in stem and shoots reduced their number and size, on the contrary, vessel size increased in beech petioles. After rewatering the reduced parameters increased, however, hydraulic conductivity, anatomy and morphology did not reach values of well-watered seedlings. While most of physiological parameters restored in moderately stressed seedlings, in severely stressed seedlings mainly gas exchange parameters remained lower.
84

Wood Extractive Compounds - Extraction, Chemical composition, Biological activity, Native durability =:Extraktivní látky dřeva: Extrakce, Chemické složení, Biotická aktivita, Přirozená trvanlivost /

Sablík, Pavel January 2018 (has links)
Wood chemical composition research is of significant importance for various fields like wood-manufacturing, food and pharmaceutical industries. Much research work has been motivated by the fundamental knowledge that wood of some tree species demonstrate significantly higher native durability against biological degradation and therefore is much convenient to use in more demanding applications, e.g. in contact with soil or water. This important wood property was assign mainly to presence of extractive chemical compounds or secondary metabolites, produced by wood when heartwood is formed. The presented doctoral thesis aims to find the possibilities of how to utilize extractive chemical compounds found in Black locust (Robinia pseudoacacia L.) as treatment solutions. These can be used to increase the durability of low durable wood species. The experimental part of the presented thesis was carried out using the laboraties and equipment of the Mendel University in Brno, and their external laboratories of research centre in Útěchov. Paper 01 aims to establish methodology for extraction apparatus fexIKA. Describes mainly possibilities for quantitative gains of extractives when using various organic solvents. Within this papers research scope heartwood, sapwood and bark of Black locust were used as the source material. Black locust was choosen mainly due to its extremely high native durability, together with oak considered highest in Central Europe, and for longer term experimental plans and reason. The established methodology for primal solvents (acetone, benzene, cyclohexane, ethanol and distilled water) was the result of this paper. The influence of extraction inputs (particles size, solvent type and temperature) on quantitative and qualitative result of extraction process was the topic for research design presented in Paper 02. In the paper comparable results with literature and established fexIKA methodology were proven. Also the effect of the above mentioned inputs are described and extracted chemical content was identified using HPLC-HRMS technique. The possibility of utilizing chemical compounds obtained, based on Paper 01 extractive methodology, aimed for higher content of phenolic compounds according to Paper 02 results, were the topic of Paper 03. This research paper proves antifungal activity of Black locust (Robinia pseudoacacia L.) and African padauk (Pterocarpus soyauxii Taub.) extracts after impregnation into European beech (Fagus sylvatica L.) sapwood. This wood species is assessed as class 5 (not durable), with an average mass loss result after the durability test of untreated samples 43.6 %. Native durability of European beech wood was significantly improved after impregnation with extractives, mass loss resulted in average 12.7 %. This revalued treated beech sapwood into durability class 3. Paper 04 continues with a study of extractives retention in wood matrix after impregnation whilst introducing adjusted leaching tests. Despite standard EN 84, this research employed miniaturized Bravery wood blocks for impregnation and leaching tests, which were at the end shortened to 144 hours. In order to increase the biologicaly active chemical compounds retention in the specimens, heat treatment was used. The results of the experiment proved the significance between heat treatment and retention.
85

Růstová odezva dřevin středoevropského temperátního lesa na disturbanční událost =:The growth response of Central European temperate forest trees to disturbance events /

Vašíčková, Ivana January 2018 (has links)
The growth response of trees to disturbance events in 8 beech-dominated natural forests in Czech Republic was studied using standard tree-ring analysis. With the use of circa 2 000 increment cores a disturbance regime of Žofín old-growth forest was reconstructed. The results indicate not only disturbance intensity, but also their spatial characteristics determine the effect of disturbance on further forest ecosystem development. As the picture of past disturbances had not emerged to be sufficient enough to describe a historical forest development, recognizing the statistical error of their reconstructions was of great importance. Thus, the following studies focused on quantification of uncertainty in detecting the disturbance history using dendrochronology. Uncertainty in determination of summary disturbance history within the whole stand as well as disturbance spatial patterns were evaluated. The results uncovered that the specific character of dendrochronological data, i.e. the different reactions of individual trees to the identical disturbance event, was a significant source of this uncertainty. The follow-up study logically concerned on examination the true response of Fagus sylvatica to disturbances, dated by independent dendrometric and photogrammetric datasets. On the basis of analysis of nearly 300 tree responses, new empirically-derived criteria for dendrochronological determination of tree growth response were suggested. Finally, factors controlling growth response of Fagus sylvatica to disturbance events were addressed. Regression analysis determined complex of diverse factors of different spatial levels driving the growth reaction following canopy opening.
86

Quantifying the impact of forest management intensity and tree species diversity on individual tree shape and three-dimensional stand structure

Juchheim, Julia 18 September 2020 (has links)
No description available.
87

Natural regeneration of Silver fir (Abies alba Mill.) in the National nature reserve Salajka

Holík, Jan January 2017 (has links)
This study addressed the development of natural regeneration of tree species over the period 2009-2016 in a temperate fir-beech old-growth forest left to a spontaneous development since 1930s. The research site was located in the strictly protected National Nature Reserve Salajka, lying in the Western Carpathians mountain range. Ungulate game browsing, establishment and mortality of natural regeneration as the main drivers of species coexistence were studied, using two alternative sampling methods, permanent network of 98 inventory plots regularly positioned across the whole forest reserve and transect with 54 transect plots. Beech was found to secure gradually absolute dominance over other tree species in natural regeneration. The growth of fir, maple and spruce was hindered by browsing since the individuals rarely exceeded the height of 0.5 m. Further, the resource concentration effect was found in fir as browsing was more intense under high conspecific densities. Establishment and mortality of fir and beech differed, suggesting the species-specific life-history strategies. The results demonstrated the importance of regular and inextensive establishment of fir and huge but relatively less frequent establishment of beech. Mortality overweighed establishment in both species, though fir ratio tended to be almost balanced. The height of natural regeneration was revealed to be the only good predictor of mortality. Browsing, establishment and mortality of natural regeneration comprise an important part of forest regeneration processes and their role should be acknowledged by both forest and nature conservation management.
88

Hodnocení ekologických limitů a zdravotního stavu buku lesního (Fagus sylvatica) v oblasti vnějších západních Karpat

Mikulenčák, Josef January 2017 (has links)
European beech is an important and irreplaceable economic tree species in the forests of the Czech Republic. This thesis was created in thearea of Outer Western Carpathians, and it focuses on evaluation of ecological limits and the health condition of beech on network-based research plots from 2th vegetation tier (280 m) after 8th vegetation tier on the Lysá Mountain (1323 m). In each research area, basic dendrometry characteristics were measured and evaluated biotic and abiotic damage was evaluated. The results indicate that optimal growth conditions for beech are in the 4th vegetation tier. In other vegetation tiers, beech is more limited by abiotic factors than by biotic factors. In the 2th and 3th vegetation tier, the growth of beech is limited by frequent occurrence of drought. In contrast in higher vegetation tiers (6th, 7th, and 8th), frost, glaze and shorter growing period associated with lower average temperatures have the highest impact on the growth of beech. High vitality, wide ecological valence, a limited amount of biotic factors which damage beech and the ability to change the growth symptoms in individual vegetation tiers made beech into one of the main edificators of vegetation tires.
89

Interacting effects of forest edge, tree diversity and forest stratum on the diversity of plants and arthropods in Germany’s largest deciduous forest

Normann, Claudia 27 April 2015 (has links)
Die fortschreitende Fragmentierung von Wäldern ist eine der Hauptursachen für den Verlust von Biodiversität weltweit. Mit zunehmender Fragmentierung steigt der Anteil an Waldrandzonen, in denen die Eigenschaften eines Waldes stark verändert sein können. Wie stark diese Randeffekte ein Fragment beeinflussen, kann von der Habitatstruktur abhängen. Die Habitatstruktur ist wiederum maßgeblich durch die Baumartenzusammensetzung beeinflusst. Die vorliegende Arbeit untersucht zum ersten Mal gleichzeitig die Einflüsse von Randeffekten und Baumartenvielfalt und deren mögliche Interaktionen auf Krautschichtvegetation und Arthropoden. Die Untersuchungen hierzu wurden im Nationalpark Hainich, Deutschlands größtem zusammenhängenden Laubwaldgebiet, durchgeführt. Dafür wurden 12 Transekte angelegt, die vom Waldrand bis zu 500 m in das Waldesinnere hineinreichten. Sechs Transekte in baumartenarmen Waldstandorten mit einem hohen Buchenanteil (Fagus sylvatica L.) und weitere sechs in baumartenreichen Waldstandorten mit einem niedrigen Buchenanteil. Baumartenreiche Standorte wiesen bis zu neun Baumarten auf, wie z.B. Eiche, Esche, Linde und Ahorn. Entlang der Transekte wurden die Krautschichtvegetation und die Arthopodengemeinschaften untersucht. Im ersten Manuskript (Kapitel 2 dieser Arbeit) wurde die Krautschichtvegetation entlang des Rand-Innen-Gradienten aufgenommen. Eine Interaktion zwischen Randeffekten und Baumartenvielfalt beeinflusste den Pflanzenartenreichtum. In Waldbereichen mit hoher Baumartenvielfalt blieb die Artenzahl der Krautschicht vom Rand bis ins Waldesinnere konstant, wohingegen sie in baumartenarmen Bereichen stark abfiel. Die Krautschicht war somit in baumartenreichen Waldstandorten im Waldesinneren höher. Der Anteil an Waldspezialistenarten nahm mit zunehmender Entfernung vom Waldrand zur Mitte zu. Parallel dazu nahm der Anteil an Waldgeneralistenarten ab. Die Dominanz der Waldspezialisten war in buchendominierten Standorten stärker ausgeprägt, als in baumartenreichen. Auch die Artenzusammensetzung der Krautschicht wurde von der Distanz zum Waldrand und der Baumartenvielfalt beeinflusst. Sie wies in baumartenreichen Standorten und mit zunehmender Nähe zum Rand eine hohe Variabilität auf. Die Baumartenvielfalt steuerte die Dicke der Streuschicht, die unter allen untersuchten Umweltfaktoren den größten Einfluss auf die Diversität der Krautschicht hatte. Im zweiten Manuskript (Kapitel 3 dieser Arbeit) wurden bodenlebende Arthropoden (Laufkäfer, Kurzflügelkäfer und Spinnen) untersucht. Die Reaktion der Gesamtartenzahl auf Baumartenvielfalt und Entfernung zum Waldrand war je nach Taxon unterschiedlich. Allerdings zeigten sich übereinstimmende Muster, nachdem die Arten hinsichtlich ihrer Habitataffinität und Körpergröße in Gruppen eingeteilt worden waren. Über alle Taxa hinweg wurde die Anzahl der Waldarten weder von der Baumartenvielfalt noch von der Randnähe nennenswert beeinflusst und die Körpergröße der Waldarten spielte keine Rolle. Allerdings reagierten einzelne Waldarten positiv auf eine erhöhte Baumartenvielfalt, während andere davon negativ beeinflusst waren. Die Artenzahl der Habitatgeneralisten nahm vom Waldrand zur Waldmitte hin stark ab. Dieser Effekt wurde jedoch, außer bei den Spinnen, durch eine höhere Baumartenvielfalt abgeschwächt. Die Artenzahl der Habitatgeneralisten, insbesondere der kleinen Arten, reagierte positiv auf eine erhöhte Baumartenvielfalt im Waldesinneren. Die beobachteten Effekte sind höchstwahrscheinlich das Resultat von durch Baumartenvielfalt und Randnähe veränderten Umweltfaktoren und einer erhöhten Habitatheterogenität am Waldboden. Im dritten Manuskript (Kapitel 4 dieser Arbeit) wurde untersucht, ob sich Rand- und Baumartendiversitätseffekte zwischen verschiedenen Straten unterscheiden. Hierzu wurden entlang von zehn Transekten sowohl im Kronenraum als auch unmittelbar über dem Boden Kreuzfensterfallen installiert. In einem Zeitraum von sieben Monaten (April bis November 2012) wurde dadurch die fliegende Käferfauna erfasst. Randeffekte auf Käfer wurden bis zu einer Distanz von 500 m vom Waldrand hin nachgewiesen. Im Kronenraum waren die Randeffekte schwächer ausgeprägt als im Unterholz, vermutlich durch eine höhere „randähnliche“ mikroklimatische Variabilität im Kronenraum. Die Gesamtartenzahl der Käfer nahm mit zunehmender Distanz zum Waldrand ab. Dieses Muster wurde vor allem durch die Habitatgeneralisten getrieben, wohingegen die Artenzahl der Waldarten und der xylobionten Arten kaum auf die Randnähe reagierten. Eine Beeinflussung des Randeffekts durch Baumartenvielfalt konnte nicht gezeigt werden. Habitatgeneralisten und nicht-xylobionte Arten dominierten die Käfergemeinschaft im Unterholz. Im Kronenraum wurden die höchsten Artenzahlen von Waldarten und xylobionten Arten nachgewiesen. Baumartendiversität wirkte sich über alle Straten und ökologischen Gruppen positiv auf die Artenvielfalt der Käfer aus. Besonders ausgeprägt war dieser Effekt im Kronenraum. Die Haupteinflussfaktoren, die den Käferartenreichtum steuerten, unterschieden sich also zwischen den Straten. So waren im Kronenraum Baumartenvielfalt, die Totholzmenge und zu einem geringen Teil der Kronenschluss die entscheidenden Faktoren. Im Unterholz hingegen war der Einfluss der Baumartenvielfalt geringer und die Distanz zum Waldrand und der Kronenschluss besonders wichtig. Insgesamt waren die Effekte von Baumartenvielfalt im Unterholz indirekter und im Kronenraum direkter. Um Konsequenzen von Waldfragmentierung umfangreich zu verstehen, ist es nicht nur notwendig den Einfluss von Randeffekten, Baumartenvielfalt und Straten zu berücksichtigen, sondern auch die Eigenschaften (z. B. Körpergröße) und die Habitataffinität der beobachteten Arten. Diese Arbeit zeigt, dass eine erhöhte Baumartenvielfalt in zentraleuropäischen Wäldern zum Erhalt der Biodiversität von Pflanzen und Arthropoden beitragen kann. Das allein ist jedoch nicht ausreichend, da auch gezeigt wurde, dass einzelne Arten buchendominierte Wälder bevorzugen und es Unterschiede in der Artenzusammensetzung zwischen den verschiedenen Baumartendiversitätsstufen gibt. Dies hebt die Bedeutung des Erhalts alter Buchenwälder, verankert in den UNESCO-Welterbeflächen „Buchenurwälder in den Karpaten und alte Buchenwälder in Deutschland“, als besondere Schutzaufgabe hervor.
90

Spatial and temporal patterns in the climate-growth relationships of Fagus sylvatica across Western Europe, and the effects on competition in mixed species forest

Cavin, Liam January 2013 (has links)
Increases in temperature, altered precipitation patterns, and the occurrence and severity of extreme climatic events have been important characteristics of the climate change observed to date. This has had many and diverse impacts upon the living world, with one recent observation being a global reduction in the net primary production of all terrestrial vegetation. Increases in temperature and the frequency of extreme events are predicted to continue throughout the 21st century, and can be expected to have far reaching effects on global terrestrial ecosystems. Increases in temperature and drought occurrence could fundamentally impact upon the growth rates, species composition and biogeography of forests in many regions of the world, with many studies indicating that this process is already underway. European beech, Fagus sylvatica, is one of Europe’s most widespread and significant broadleaved tree species, forming an important and frequently dominant component of around 17 million hectares of forest. However, the species is also considered to be drought sensitive. Thus, much research interest has focused on eliciting the details of its physiological response to increased water stress, whilst dendroecological studies have attempted to identify sites and regions where reductions in growth might be found. A significant knowledge gap exists regarding a multi-regional, range-wide view of growth trends, growth variability, climate sensitivity, and drought response for the species. Predicting the potential effects of climate change on competition and species composition in mixed species forests remains an important challenge. In order to address this knowledge gap, a multi-regional tree-ring network was constructed comprising of 46 sites in a latitudinal transect across the species’ Western European range. This consisted of 2719 tree cores taken from 1398 individual trees, which were used to construct tree-ring chronologies for each site in the network. As a first step in a multi-regional assessment for F. sylvatica, a combination of the tree-ring chronologies and environmental data derived from a large scale gridded climate dataset were used in a multivariate analysis. Sites in the latitudinal transect were partitioned into geographically meaningful regions for further analysis. The resulting regions were then studied using climate-growth analysis, pointer year analysis of drought years, analysis of growth trends and growth variability, in order to examine regional variation in the response of the species to climate. Furthermore, a combination of long-term monitoring data from one specific site was combined with tree-ring sampling of multiple cohorts of F. sylvatica and one co-dominant competitor, Quercus petraea, to study the effects of an extreme drought event in 1976 on mortality and subsequent recovery. Key results of the multi-regional analysis are that large scale growth reductions are not evident in even the most southerly and driest portions of the species’ range. Radial growth is increasing, both in the north and in the core of the species’ range, with southern range edge forests maintaining stable growth. However, the variability of growth from year to year is increasing for all regions, indicative of growing stress. Crucially, the southern range edge, which previous studies had identified as an ‘at risk’ region, was shown to be more robust than expected. Climate sensitivity and drought impacts were low for this region. Instead, forests in the core of the species range, both in continental Europe and in the south of the UK, were identified as having the highest climate sensitivity, highest drought impacts, and experiencing periodic reductions in growth as a result. Northern range edge forests showed little sign of being affected by drought, instead having low climate sensitivity and strongly increasing growth trends. Extreme drought was found to affect species differently: the dominant species (F. sylvatica) failed to recover pre-drought levels of growth, whilst a transient effect of competitive release occurred for the co-dominant species (Q. petraea). There was also a long term effect on the relative abundance of the two species within the woodland, due to differences in the levels of drought induced mortality experienced by the species. This shows that in the case of extreme climatic events where thresholds in the ability of species to tolerate water stress are breached, the effects of drought can be rapid and long lasting. Drought impacts can cascade beyond that experienced by the most drought sensitive species, due to changes in competitive interactions between species in mixed species forests. The implications of this work suggest opportunities, risks and strengths for F. sylvatica. In the northern portion of the species’ range, predicted increases in productivity are confirmed by recent growth trends, indicating a good outlook for the species. At the southern range edge, F. sylvatica forests exist either in locations where precipitation is high or locations where local environmental conditions buffer them from an inhospitable regional climate. These factors result in southern range edge forests which are highly resilient to the effects of increasing climate stress. It is instead in the core of the species’ range where the most sensitive forests are found. The effects of extreme drought on a range core forest demonstrated here provide a cautionary note: where drought stress tolerance thresholds are breached, rapid and long lasting effects on growth and mortality can occur, even in regions where drought has not previously been considered to pose a strong risk to the species.

Page generated in 0.0646 seconds