• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A low complexity algorithm for dynamic fair resource allocation in OFDMA systems

Moreira, André Luis Cavalcanti 31 January 2008 (has links)
Made available in DSpace on 2014-06-12T15:50:41Z (GMT). No. of bitstreams: 1 license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2008 / A popularização da Internet e a demanda por acesso de alta velocidade levou ao desenvolvimento da Broadband Wireless Access. Apesar do seu grande potencial, a comunicação via rádio impõe alguns desafios. Uma grande limitação é o próprio meio de transmissão devido a efeitos inerentes à propagação de radio como o path loss, frequency selective fading, espalhamento Doppler e multipath delay-spread. Nesse contexto, o OFDM é uma tecnologia promissora por causa de sua tolerância a problemas de perdas e multi-caminho. Devido à combinação de canais independentes, é possível usar diferentes modulações em cada sub-carrier, de acordo com as condições do canal. Esta técnica é conhecida como adaptive modulation and coding. Além disso, em uma arquitetura ponto a multi-ponto, múltiplos usuários podem compartilhar o espectro ao se atribuir diferentes conjuntos de sub-carriers, tirando vantagem do um efeito conhecido como diversidade multi-usuário. Em comparação com outras técnicas de múltiplo acesso, o OFDMA permite um melhor aproveitamento da diversidade multi-usuário com a possibilidade de uma alocação com alta granularidade. Muitas pesquisas têm investigado técnicas adaptativas capazes de melhorar a eficiência espectral em sistemas multi-usuário. Essas técnicas são normalmente formuladas como constraint optimization problems, conhecidos por serem NP-hard. Neste trabalho, adotamos uma abordagem heurística para lidar com esse tipo de problema. O objetivo principal é desenvolver uma estratégia de alocação fazendo uso eficiente dos recursos disponíveis e maximizando a eficiência espectral total. Entretanto, um estratégia que apenas procura maximizar a eficiência espectral pode gerar um problema relacionado à justiça no compartilhamento de recursos. Outrossim, com a popularização das redes sem fio, é esperado que elas sejam capazes de prover uma maior variedade de serviços com diferentes requisites de QoS e largura de banda. Portanto, procuramos desenvolver um algoritmo que permita ao operador da rede definir esses requisitos. De acordo com eles, o algoritmo deve fornecer o maior throughput possível dentro dos limites estabelecidos por essas restrições
2

Centralized Rate Allocation and Control in 802.11-based Wireless Mesh Networks

Jamshaid, Kamran January 2010 (has links)
Wireless Mesh Networks (WMNs) built with commodity 802.11 radios are a cost-effective means of providing last mile broadband Internet access. Their multihop architecture allows for rapid deployment and organic growth of these networks. 802.11 radios are an important building block in WMNs. These low cost radios are readily available, and can be used globally in license-exempt frequency bands. However, the 802.11 Distributed Coordination Function (DCF) medium access mechanism does not scale well in large multihop networks. This produces suboptimal behavior in many transport protocols, including TCP, the dominant transport protocol in the Internet. In particular, cross-layer interaction between DCF and TCP results in flow level unfairness, including starvation, with backlogged traffic sources. Solutions found in the literature propose distributed source rate control algorithms to alleviate this problem. However, this requires MAC-layer or transport-layer changes on all mesh routers. This is often infeasible in practical deployments. In wireline networks, router-assisted rate control techniques have been proposed for use alongside end-to-end mechanisms. We evaluate the feasibility of establishing similar centralized control via gateway mesh routers in WMNs. We find that commonly used router-assisted flow control schemes designed for wired networks fail in WMNs. This is because they assume that: (1) links can be scheduled independently, and (2) router queue buildups are sufficient for detecting congestion. These abstractions do not hold in a wireless network, rendering wired scheduling algorithms such as Fair Queueing (and its variants) and Active Queue Management (AQM) techniques ineffective as a gateway-enforceable solution in a WMN. We show that only non-work-conserving rate-based scheduling can effectively enforce rate allocation via a single centralized traffic-aggregation point. In this context we propose, design, and evaluate a framework of centralized, measurement-based, feedback-driven mechanisms that can enforce a rate allocation policy objective for adaptive traffic streams in a WMN. In this dissertation we focus on fair rate allocation requirements. Our approach does not require any changes to individual mesh routers. Further, it uses existing data traffic as capacity probes, thus incurring a zero control traffic overhead. We propose two mechanisms based on this approach: aggregate rate control (ARC) and per-flow rate control (PFRC). ARC limits the aggregate capacity of a network to the sum of fair rates for a given set of flows. We show that the resulting rate allocation achieved by DCF is approximately max-min fair. PFRC allows us to exercise finer-grained control over the rate allocation process. We show how it can be used to achieve weighted flow rate fairness. We evaluate the performance of these mechanisms using simulations as well as implementation on a multihop wireless testbed. Our comparative analysis show that our mechanisms improve fairness indices by a factor of 2 to 3 when compared with networks without any rate limiting, and are approximately equivalent to results achieved with distributed source rate limiting mechanisms that require software modifications on all mesh routers.
3

Centralized Rate Allocation and Control in 802.11-based Wireless Mesh Networks

Jamshaid, Kamran January 2010 (has links)
Wireless Mesh Networks (WMNs) built with commodity 802.11 radios are a cost-effective means of providing last mile broadband Internet access. Their multihop architecture allows for rapid deployment and organic growth of these networks. 802.11 radios are an important building block in WMNs. These low cost radios are readily available, and can be used globally in license-exempt frequency bands. However, the 802.11 Distributed Coordination Function (DCF) medium access mechanism does not scale well in large multihop networks. This produces suboptimal behavior in many transport protocols, including TCP, the dominant transport protocol in the Internet. In particular, cross-layer interaction between DCF and TCP results in flow level unfairness, including starvation, with backlogged traffic sources. Solutions found in the literature propose distributed source rate control algorithms to alleviate this problem. However, this requires MAC-layer or transport-layer changes on all mesh routers. This is often infeasible in practical deployments. In wireline networks, router-assisted rate control techniques have been proposed for use alongside end-to-end mechanisms. We evaluate the feasibility of establishing similar centralized control via gateway mesh routers in WMNs. We find that commonly used router-assisted flow control schemes designed for wired networks fail in WMNs. This is because they assume that: (1) links can be scheduled independently, and (2) router queue buildups are sufficient for detecting congestion. These abstractions do not hold in a wireless network, rendering wired scheduling algorithms such as Fair Queueing (and its variants) and Active Queue Management (AQM) techniques ineffective as a gateway-enforceable solution in a WMN. We show that only non-work-conserving rate-based scheduling can effectively enforce rate allocation via a single centralized traffic-aggregation point. In this context we propose, design, and evaluate a framework of centralized, measurement-based, feedback-driven mechanisms that can enforce a rate allocation policy objective for adaptive traffic streams in a WMN. In this dissertation we focus on fair rate allocation requirements. Our approach does not require any changes to individual mesh routers. Further, it uses existing data traffic as capacity probes, thus incurring a zero control traffic overhead. We propose two mechanisms based on this approach: aggregate rate control (ARC) and per-flow rate control (PFRC). ARC limits the aggregate capacity of a network to the sum of fair rates for a given set of flows. We show that the resulting rate allocation achieved by DCF is approximately max-min fair. PFRC allows us to exercise finer-grained control over the rate allocation process. We show how it can be used to achieve weighted flow rate fairness. We evaluate the performance of these mechanisms using simulations as well as implementation on a multihop wireless testbed. Our comparative analysis show that our mechanisms improve fairness indices by a factor of 2 to 3 when compared with networks without any rate limiting, and are approximately equivalent to results achieved with distributed source rate limiting mechanisms that require software modifications on all mesh routers.

Page generated in 0.1491 seconds