Spelling suggestions: "subject:"faltning"" "subject:"förvaltnings""
1 |
Recognizing Semantics in Human Actions with Object Detection / Igenkänning av semantik i mänsklig aktivitet med objektdetektionFriberg, Oscar January 2017 (has links)
Two-stream convolutional neural networks are currently one of the most successful approaches for human action recognition. The two-stream convolutional networks separates spatial and temporal information into a spatial stream and a temporal stream. The spatial stream accepts a single RGB frame, while the temporal stream accepts a sequence of optical flow. There have been attempts to further extend the work of the two-stream convolutional network framework. For instance there have been attempts to extend with a third network for auxiliary information, which this thesis mainly focuses on. We seek to extend the two-stream convolutional neural network by introducing a semantic stream by using object detection systems. Two contributions are made in thesis: First we show that this semantic stream can provide slight improvements over two-stream convolutional neural networks for human action recognition on standard benchmarks. Secondly, we attempt to seek divergence enhancements techniques to force our new semantic stream to complement the spatial and the temporal streams by modifying the loss function during training. Slight gains are seen using these divergence enhancement techniques. / Faltningsnätverk i två strömmar är just nu den mest lyckade tillvägagångsmetoden för mänsklig aktivitetsigenkänning, vilket delar upp rumslig och timlig information i en rumslig ström och en timlig ström. Den rumsliga strömmen tar emot individella RGB bildrutor för igenkänning, medan den timliga strömmen tar emot en sekvens av optisk flöde. Försök i att utöka ramverket för faltningsnätverk i två strömmar har gjorts i tidigare arbete. Till exempel har försök gjorts i att komplementera dessa två nätverk med ett tredje nätverk som tar emot extra information. I detta examensarbete söker vi metoder för att utöka faltningsnätverk i två strömmar genom att introducera en semantisk ström med objektdetektion. Vi gör i huvudsak två bidrag i detta examensarbete: Först visar vi att den semantiska strömmen tillsammans med den rumsliga strömmen och den timliga strömmen kan bidra till små förbättringar för mänsklig aktivitetsigenkänning i video på riktmärkesstandarder. För det andra söker vi efter divergensutökningstekniker som tvingar den semantiska strömme att komplementera de andra två strömmarna genom att modifiera förlustfunktionen under träning. Vi ser små förbättringar med att använda dessa tekniker för att öka divergens.
|
Page generated in 0.0815 seconds