• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis and Characterization of Polymeric Magnetic Nanocomposites for Damage-Free Structural Health Monitoring of High Performance Composites

Hetti, Mimi 13 October 2016 (has links) (PDF)
The poly(glycidyl methacrylate)-modified magnetite nanoparticles, Fe3O4-PGMA NPs, were investigated and applied in nondestructive flaw detection of polymeric materials in this research. The Fe3O4 endowed magnetic property to the materials for flaw detection while the PGMA promoted colloidal stability and prevented particle aggregation. The magnetite nanoparticles (Fe3O4 NPs) were successfully synthesized by coprecipitation and then surface-modified with PGMA to form PGMA-modified Fe3O4 NPs by both grafting-from and grafting-to approaches. For the grafting-from approach, the Fe3O4 NPs were surface-functionalized with α-bromo isobutyryl bromide (BIBB) to form BIB-modified Fe3O4 NPs (Fe3O4-BIB NPs) with covalent linkage. The resultant Fe3O4-BIB NPs were used as surface-initiators to grow PGMA by surface-initiated atom transfer radical polymerization (SI-ATRP). For the grafting-to approach, the Fe3O4 NP were surface-functionalized with (3-mercaptopropyl)triethoxysilane (MCTES) to form MCTES-modified Fe3O4 NPs (Fe3O4-MCTES NPs). The PGMA with Br-end group was pre-synthesized by ATRP and then was grafted to the surface of the Fe3O4-MCTES NPs by coupling reaction. Both bare and modified Fe3O4 NPs exhibited superparamagnetism and the existence of iron oxide in the form of Fe3O4 was confirmed. The particle size of individual Fe3O4 NPs was about 8 – 24 nm but they aggregated to form clusters. The PGMA-modified NPs formed stable dispersion in chloroform and had larger cluster sizes than the unmodified ones because of the PGMA polymer layer. However, the uniformity of the NP clusters could be improved with PGMA surface grafting. The PGMA surface layer of the grafting-from (Fe3O4-gf-PGMA) NPs was thin and dense while that of the grafting-to (Fe3O4-gt-PGMA) NPs was thick and loose. The hydrodynamic diameters (Zave) of Fe3O4-gf-PGMA NP clusters could be controlled between 176 to 643 nm, dependent on the PGMA contents and reaction conditions. During SI-ATRP, side reactions happened and caused NP aggregation as well as increase of size of NP clusters. However, the aggregation has been minimized through optimization of reaction conditions. Oppositely, Zave values of Fe3O4-gt-PGMA NPs had little variation of about 120 – 190 nm. And the PGMA content of the Fe3O4-gt-PGMA NPs was limited to 12.5% because of the spatial hindrance during grafting process. The saturation magnetization (Ms) of the unmodified Fe3O4 NPs was about 77 emu/g, while those of the grafting-from and grafting-to Fe3O4-PGMA NPs were 50 – 66 emu/g and 63 – 70 emu/g, respectively. For Fe3O4-PGMA NPs with similar Fe3O4 contents, the grafting-to NPs had slightly higher Ms than the grafting-from counterparts. In addition, the Ms of both kinds of the Fe3O4-PGMA NPs with higher Fe3O4 content (> 87%) were also higher than that of the fluidMAG-Amine, the commercially available amine-modified MNPs. Besides, both kinds of Fe3O4-PGMA NPs also had much higher Fe3O4 contents and Ms values than most of the reported PGMA-modified MNPs. The magnetic epoxy nanocomposites (MENCs) were prepared by blending the modified Fe3O4 NPs into bisphenol A diglycidyl ether (BADGE)-based epoxy system and the distributions of both kinds of the PGMA-modified NPs were much better than that of the oleic acid-modified Fe3O4 NPs. Similar to the NPs, the MENCs also exhibited superparamagnetism. By cross-section TEM observation, the grafting-to Fe3O4-PGMA NPs formed more homogeneous distributions with smaller cluster size than the grafting-from counterparts and gave higher Ms of the MENCs. Nondestructive flaw detection of surface and sub-surface defects could be successfully achieved by brightness contrast of images given through eddy current testing (ET) method, which is firstly reported. The mechanical properties of the materials were influenced very slightly when 2.5% or lower Fe3O4-gt-PGMA NPs were present while the presence of the Fe3O4-gf-PGMA NPs (1 – 2.5 %) gave mild improvement of the storage modulus and increase of the glass-rubber transition temperature(Tg) of the MENCs. Furthermore, the Fe3O4-PGMA NPs could be evenly coated onto the functionalized ultra-high molecular weight poly(ethylene) (UHMWPE) textiles. The Fe3O4-gt-PGMA NPs were coated on the textile in order to prepare NP-coated textile-reinforced composite. Preliminary result of ET measurement showed that the Fe3O4-gt-PGMA NPs coated on the textiles could visualize the structure of the textile hidden inside and their relative depth. Accordingly, the incorporation of MNPs to polymers opens a new pathway of damage-free structural health monitoring of polymeric materials.
2

Synthesis and Characterization of Polymeric Magnetic Nanocomposites for Damage-Free Structural Health Monitoring of High Performance Composites

Hetti, Mimi 16 September 2016 (has links)
The poly(glycidyl methacrylate)-modified magnetite nanoparticles, Fe3O4-PGMA NPs, were investigated and applied in nondestructive flaw detection of polymeric materials in this research. The Fe3O4 endowed magnetic property to the materials for flaw detection while the PGMA promoted colloidal stability and prevented particle aggregation. The magnetite nanoparticles (Fe3O4 NPs) were successfully synthesized by coprecipitation and then surface-modified with PGMA to form PGMA-modified Fe3O4 NPs by both grafting-from and grafting-to approaches. For the grafting-from approach, the Fe3O4 NPs were surface-functionalized with α-bromo isobutyryl bromide (BIBB) to form BIB-modified Fe3O4 NPs (Fe3O4-BIB NPs) with covalent linkage. The resultant Fe3O4-BIB NPs were used as surface-initiators to grow PGMA by surface-initiated atom transfer radical polymerization (SI-ATRP). For the grafting-to approach, the Fe3O4 NP were surface-functionalized with (3-mercaptopropyl)triethoxysilane (MCTES) to form MCTES-modified Fe3O4 NPs (Fe3O4-MCTES NPs). The PGMA with Br-end group was pre-synthesized by ATRP and then was grafted to the surface of the Fe3O4-MCTES NPs by coupling reaction. Both bare and modified Fe3O4 NPs exhibited superparamagnetism and the existence of iron oxide in the form of Fe3O4 was confirmed. The particle size of individual Fe3O4 NPs was about 8 – 24 nm but they aggregated to form clusters. The PGMA-modified NPs formed stable dispersion in chloroform and had larger cluster sizes than the unmodified ones because of the PGMA polymer layer. However, the uniformity of the NP clusters could be improved with PGMA surface grafting. The PGMA surface layer of the grafting-from (Fe3O4-gf-PGMA) NPs was thin and dense while that of the grafting-to (Fe3O4-gt-PGMA) NPs was thick and loose. The hydrodynamic diameters (Zave) of Fe3O4-gf-PGMA NP clusters could be controlled between 176 to 643 nm, dependent on the PGMA contents and reaction conditions. During SI-ATRP, side reactions happened and caused NP aggregation as well as increase of size of NP clusters. However, the aggregation has been minimized through optimization of reaction conditions. Oppositely, Zave values of Fe3O4-gt-PGMA NPs had little variation of about 120 – 190 nm. And the PGMA content of the Fe3O4-gt-PGMA NPs was limited to 12.5% because of the spatial hindrance during grafting process. The saturation magnetization (Ms) of the unmodified Fe3O4 NPs was about 77 emu/g, while those of the grafting-from and grafting-to Fe3O4-PGMA NPs were 50 – 66 emu/g and 63 – 70 emu/g, respectively. For Fe3O4-PGMA NPs with similar Fe3O4 contents, the grafting-to NPs had slightly higher Ms than the grafting-from counterparts. In addition, the Ms of both kinds of the Fe3O4-PGMA NPs with higher Fe3O4 content (> 87%) were also higher than that of the fluidMAG-Amine, the commercially available amine-modified MNPs. Besides, both kinds of Fe3O4-PGMA NPs also had much higher Fe3O4 contents and Ms values than most of the reported PGMA-modified MNPs. The magnetic epoxy nanocomposites (MENCs) were prepared by blending the modified Fe3O4 NPs into bisphenol A diglycidyl ether (BADGE)-based epoxy system and the distributions of both kinds of the PGMA-modified NPs were much better than that of the oleic acid-modified Fe3O4 NPs. Similar to the NPs, the MENCs also exhibited superparamagnetism. By cross-section TEM observation, the grafting-to Fe3O4-PGMA NPs formed more homogeneous distributions with smaller cluster size than the grafting-from counterparts and gave higher Ms of the MENCs. Nondestructive flaw detection of surface and sub-surface defects could be successfully achieved by brightness contrast of images given through eddy current testing (ET) method, which is firstly reported. The mechanical properties of the materials were influenced very slightly when 2.5% or lower Fe3O4-gt-PGMA NPs were present while the presence of the Fe3O4-gf-PGMA NPs (1 – 2.5 %) gave mild improvement of the storage modulus and increase of the glass-rubber transition temperature(Tg) of the MENCs. Furthermore, the Fe3O4-PGMA NPs could be evenly coated onto the functionalized ultra-high molecular weight poly(ethylene) (UHMWPE) textiles. The Fe3O4-gt-PGMA NPs were coated on the textile in order to prepare NP-coated textile-reinforced composite. Preliminary result of ET measurement showed that the Fe3O4-gt-PGMA NPs coated on the textiles could visualize the structure of the textile hidden inside and their relative depth. Accordingly, the incorporation of MNPs to polymers opens a new pathway of damage-free structural health monitoring of polymeric materials.:1. Introduction 2. Theoretical section 2.1. Magnetite Nanoparticles (MNPs) 2.2. Applications of MNPs 2.3. Atom transfer radical polymerization (ATRP) 2.4. Magnetic nanocomposites (MNCs) 2.5. Damage-free structural health monitoring (SHM) using MNPs 3. Objective of the work 4. Materials, methods and characterization 4.1. Materials 4.2. Methods 4.3. Formation of polymeric magnetic nanocomposites 4.4. Characterization 5. Results and discussions 5.1. Unmodified magnetite nanoparticles (Fe3O4 NPs) 5.2. Oleic acid-modified (Fe3O4–OA) NPs 5.3. PGMA-modified NPs by grafting-from approach (Fe3O4-gf-PGMA NPs) 5.4. PGMA-modified NP by grafting-to approach (Fe3O4-gt-PGMA NPs) 5.5. Comparison between grafting-from and grafting-to Fe3O4-PGMA NPs 5.6. Magnetic epoxy nanocomposites (MENCs) 5.7. Fiber-reinforced epoxy nanocomposites 6. Conclusions and outlook 7. Appendix 8. List of figures, schemes and tables 9. References Versicherung Erklaerung List of publications

Page generated in 0.1269 seconds