• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Observing flow using fast neutron radiography and positron emission particle tracking

Daniels, Graham Clinton 12 July 2021 (has links)
Dynamic flow of material has been studied using fast neutron radiography (FNR) and positron emission particle tracking (PEPT). A new fast neutron imaging system was commissioned at The South African Nuclear Energy Corporation, Pretoria, as part of this study, although FNR measurements were ultimately performed at PhysikalischTechnische Bundesanstalt (PTB), Braunschweig. The PEPT studies were undertaken at the PEPT Cape Town facility located at iThemba LABS, Cape Town. The steady state motion of media, within a laboratory-scale tumbling mill, was studied for a range of speed and media mixes, using both FNR and PEPT. Several operational parameters were derived from the data, which could be related to potential improvements to the milling efficiency. The blending of FNR and PEPT data for the study of steady state flow, was explored for the first time. In addition, the flow of water through porous media was studied using FNR, which enabled the determination of the hydraulic conductivity, and hence intrinsic permeability, of the media within the column. The potential of using FNR, without or without PEPT, for the study of material in motion is discussed.
2

Comparative Analysis of PVT Scintillators for the Development of a Fast Neutron Imager

Shawger, Richard Elwood 22 September 2016 (has links)
No description available.

Page generated in 0.1017 seconds