• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efficiency and Emissions Study of a Residential Micro-cogeneration System based on a Modified Stirling Engine and Fuelled by a Wood Derived Fas Pyrolysis Liquid-ethanol Blend

Khan, Umer 20 November 2012 (has links)
A residential micro-cogeneration system based on a Stirling engine unit was modified to operate with wood derived fast pyrolysis liquid (bio-oil)-ethanol blend. A pilot stabilized swirl combustion chamber was designed to replace the original evaporative burner due to bio-oil’s nondistillable nature. This also required modifications of the engine’s control systems. Efficiencies for the bio-oil/ethanol blend were found be higher than those of diesel due to the higher heat loss incurred with diesel. Based on a modified efficiency, which disregarded the heat loss through the combustion chamber, power efficiencies were found to be comparable. The maximum time of operation with the bio-oil/ethanol blend was approximately 97 minutes due to the clogging of the narrow passages. Carbon monoxide emissions were higher for the bio-oil/ethanol blend due to the operation conditions of the combustion chamber. Oxides of nitrogen emissions were also higher for the bio-oil/ethanol blend due to its inherent nitrogen content.
2

Efficiency and Emissions Study of a Residential Micro-cogeneration System based on a Modified Stirling Engine and Fuelled by a Wood Derived Fas Pyrolysis Liquid-ethanol Blend

Khan, Umer 20 November 2012 (has links)
A residential micro-cogeneration system based on a Stirling engine unit was modified to operate with wood derived fast pyrolysis liquid (bio-oil)-ethanol blend. A pilot stabilized swirl combustion chamber was designed to replace the original evaporative burner due to bio-oil’s nondistillable nature. This also required modifications of the engine’s control systems. Efficiencies for the bio-oil/ethanol blend were found be higher than those of diesel due to the higher heat loss incurred with diesel. Based on a modified efficiency, which disregarded the heat loss through the combustion chamber, power efficiencies were found to be comparable. The maximum time of operation with the bio-oil/ethanol blend was approximately 97 minutes due to the clogging of the narrow passages. Carbon monoxide emissions were higher for the bio-oil/ethanol blend due to the operation conditions of the combustion chamber. Oxides of nitrogen emissions were also higher for the bio-oil/ethanol blend due to its inherent nitrogen content.
3

Development of a Computational Fluid Dynamics Model for Combustion of Fast Pyrolysis Liquid (Bio-oil)

McGrath, Arran Thomas 14 December 2011 (has links)
A study was carried out into the computational fluid dynamic simulation of bio-oil combustion. Measurements were taken in an empirical burner to obtain information regarding the flow behaviour. A surrogate fuel was developed to mimic the unique chemical and physical properties of bio-oil combustion. The resulting computational model of the burner domain and surrogate fuel was compared with empirical data. The bio-oil model displayed a good agreement with the data in terms of the combustion behaviour, but was limited by the uncertain flow solution associated with the burner used.
4

Development of a Computational Fluid Dynamics Model for Combustion of Fast Pyrolysis Liquid (Bio-oil)

McGrath, Arran Thomas 14 December 2011 (has links)
A study was carried out into the computational fluid dynamic simulation of bio-oil combustion. Measurements were taken in an empirical burner to obtain information regarding the flow behaviour. A surrogate fuel was developed to mimic the unique chemical and physical properties of bio-oil combustion. The resulting computational model of the burner domain and surrogate fuel was compared with empirical data. The bio-oil model displayed a good agreement with the data in terms of the combustion behaviour, but was limited by the uncertain flow solution associated with the burner used.
5

Spray Combustion Characteristics and Emissions of a Wood derived Fast Pyrolysis Liquid-ethanol Blend in a Pilot Stabilized Swirl Burner

Tzanetakis, Tommy 11 January 2012 (has links)
Biomass fast pyrolysis liquid (bio-oil) is a cellulose based alternative fuel with the potential to displace fossil fuels in stationary heat and power applications. To better understand the combustion behavior and emissions of bio-oil, a 10 kW spray burner was designed and constructed. The effect of swirl, atomization quality, ignition source (pilot) energy, air/fuel preheat and equivalence ratio on the stability and emissions of bio-oil spray flames was investigated. A blend of 80% pyrolysis liquid and 20% ethanol by volume was used during the tests and the results were compared to burner operation with diesel. It is important to have good atomization, thorough mixing and high swirl in order to stabilize ignition, promote the burnout of bio-oil and decrease CO, hydrocarbon and particulate matter emissions. The total amount of primary air and atomizing air that can be used to improve turbulence, mixing, droplet burnout and overall combustion quality is limited by the distillable fraction and narrow lean blow-out limit associated with pyrolysis liquid. Air and fuel preheat are important for reducing hydrocarbon and CO emissions, although subsequent fuel boiling should be avoided in order to maintain flame stability. The NOx produced in bio-oil flames is dominated by the conversion of fuel bound nitrogen. The particulate matter collected during bio-oil combustion is composed of both carbonaceous cenosphere residues and ash. Under good burning conditions, the majority consists of ash. Pilot flame energy and air/fuel preheat have a weak effect on the total particulate matter in the exhaust. Generally, these results suggest that available burner parameters can be adjusted in order to achieve low hydrocarbon, CO and carbonaceous particulate matter emissions when using pyrolysis liquid. Total particulates can be further mitigated by reducing the inherent ash content in bio-oil. Comparative burner tests with diesel reveal much lower emissions for this fuel at most of the operating points considered. This is due to the fully distillable nature, better atomization and improved spray ignition characteristics associated with diesel. Because of its superior volatility, diesel can also operate over a much wider range of primary air and atomizing air flow rates compared to bio-oil.
6

Spray Combustion Characteristics and Emissions of a Wood derived Fast Pyrolysis Liquid-ethanol Blend in a Pilot Stabilized Swirl Burner

Tzanetakis, Tommy 11 January 2012 (has links)
Biomass fast pyrolysis liquid (bio-oil) is a cellulose based alternative fuel with the potential to displace fossil fuels in stationary heat and power applications. To better understand the combustion behavior and emissions of bio-oil, a 10 kW spray burner was designed and constructed. The effect of swirl, atomization quality, ignition source (pilot) energy, air/fuel preheat and equivalence ratio on the stability and emissions of bio-oil spray flames was investigated. A blend of 80% pyrolysis liquid and 20% ethanol by volume was used during the tests and the results were compared to burner operation with diesel. It is important to have good atomization, thorough mixing and high swirl in order to stabilize ignition, promote the burnout of bio-oil and decrease CO, hydrocarbon and particulate matter emissions. The total amount of primary air and atomizing air that can be used to improve turbulence, mixing, droplet burnout and overall combustion quality is limited by the distillable fraction and narrow lean blow-out limit associated with pyrolysis liquid. Air and fuel preheat are important for reducing hydrocarbon and CO emissions, although subsequent fuel boiling should be avoided in order to maintain flame stability. The NOx produced in bio-oil flames is dominated by the conversion of fuel bound nitrogen. The particulate matter collected during bio-oil combustion is composed of both carbonaceous cenosphere residues and ash. Under good burning conditions, the majority consists of ash. Pilot flame energy and air/fuel preheat have a weak effect on the total particulate matter in the exhaust. Generally, these results suggest that available burner parameters can be adjusted in order to achieve low hydrocarbon, CO and carbonaceous particulate matter emissions when using pyrolysis liquid. Total particulates can be further mitigated by reducing the inherent ash content in bio-oil. Comparative burner tests with diesel reveal much lower emissions for this fuel at most of the operating points considered. This is due to the fully distillable nature, better atomization and improved spray ignition characteristics associated with diesel. Because of its superior volatility, diesel can also operate over a much wider range of primary air and atomizing air flow rates compared to bio-oil.

Page generated in 0.0573 seconds