Spelling suggestions: "subject:"fact graph"" "subject:"fast graph""
1 |
Matrix Integrals : Calculating Matrix Integrals Using Feynman DiagramsFriberg, Adam January 2014 (has links)
In this project, we examine how integration over matrices is performed. We investigate and develop a method for calculating matrix integrals over the set of real square matrices. Matrix integrals are used for calculations in several different areas of physics and mathematics; for example quantum field theory, string theory, quantum chromodynamics, and random matrix theory. Our method consists of ways to apply perturbative Taylor expansions to the matrix integrals, reducing each term of the resulting Taylor series to a combinatorial problem using Wick's theorem, and representing the terms of the Wick sum graphically with the help of Feynman diagrams and fat graphs. We use the method in a few examples that aim to clearly demonstrate how to calculate the matrix integrals. / I detta projekt undersöker vi hur integration över matriser genomförs. Vi undersöker och utvecklar en metod för beräkning av matrisintegraler över mängden av alla reell-värda kvadratiska matriser. Matrisintegraler används för beräkningar i ett flertal olika områden inom fysik och matematik, till exempel kvantfältteori, strängteori, kvantkromodynamik och slumpmatristeori. Vår metod består av sätt att applicera perturbativa Taylorutvecklingar på matrisintegralerna, reducera varje term i den resulterande Taylorserien till ett kombinatoriellt problem med hjälp av Wicks sats, och att representera termerna i Wicksumman grafiskt med hjälp av Feynmandiagram. Vi använder metoden i några exempel som syftar till att klart demonstrera hur beräkningen av matrisintegraler går till.
|
2 |
Classical groups, integrals and Virasoro constraintsXu, Da 01 May 2010 (has links)
First, we consider the group integrals where integrands are the monomials of matrix elements of irreducible representations of classical groups. These group integrals are invariants under the group action. Based on analysis on Young tableaux, we investigate some related duality theorems and compute the asymptotics of the
group integrals for fixed signatures, as the rank of the classical groups go to infinity. We also obtain the Viraosoro constraints for some partition functions, which are power series of the group integrals. Second, we show that the proof of Witten's conjecture can be simplified by using the fermion-boson correspondence, i.e., the KdV hierarchy and Virasoro constraints of the partition function in Witten's conjecture can be achieved naturally. Third, we consider the partition function involving the invariants that are intersection numbers of the moduli spaces of holomorphic maps in nonlinear sigma model. We compute the commutator of the representation of
Virasoro algebra and give a fat graph(ribbon graph) interpretation for each term in the diferential operators.
|
Page generated in 0.0484 seconds