• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Fatigue Life Expenditure of Turbine Shafts and Blades under the Asynchronous Operation of HVDC Link System

Tsai, Chia-Chun 14 June 2001 (has links)
HVDC is usually used to link two AC power systems with same or different system frequencies. Nevertheless, even the two AC power systems linked have the same rated system frequency, the actual frequencies of the two AC systems may be different from time to time due to different load conditions. As a result, asynchronous operation occurs to the HVDC system, which leads to a lot of harmonics to be induced. The frequencies of the main harmonic are within several to several tens Hz (i.e. sub-harmonics), which coincide with the turbine resonant frequency range. Therefore, it has the potential of producing the sub-synchronous resonance phenomena. Usually, the sub-synchronous resonance arising from the excitation by the sub-harmonics currents persists only a very short period of time, thereby the induced fatigue loss would not so serious. However, due to the cumulating characteristics, the fatigue loss may reach the dangerous degree if the shafts and blades are persistently subjected to such resonance excitations. According to such a situation, the fatigue life expenditure of the turbine shafts and blades are evaluated in the thesis. It is anticipated that the potential danger of the turbine-generators in conjunction with the operations of HVDC system can be found.
2

Torsional Torques and Fatigue Life Expenditure for Large-Scale Steam Turbine-Generator Shafts and Blades Due to Power System Harmonics

Tsai, Jong-ian 04 February 2004 (has links)
During the three decades, the torsional impact on turbine-generator sets due to power system disturbances has been extensively discussed in many research works. However, most of them are focused on the fatigue damage of turbine shafts due to large-signal disturbances. For example, network faults occur. Obviously, the torsional effect subject to small-signal disturbances has not received much attention. In fact, although the small disturbances would not immediately damage the turbine mechanism, the cumulative long-term damaging effects may not be negligible under certain circumstances. Many operating conditions in power systems may lead to small disturbances on blades; for examples, shedding loads, switching transmission line, resetting control system parameters, and harmonics etc. Nevertheless, others only cause short-term or transient non-resonant disturbances occasionally except the power system subharmonics which could results in electro-mechanical resonance. Therefore, two types of subharmonics in power systems are proposed so as to investigate the toque impact and long-term fatigue life expenditure in turbine shafts and blades. Firstly, from the steady-state disturbance viewpoint, the long-term cumulative fatigue estimation based on the three-year project of the GE Co. shows that there are potential damages for both the shafts and the blades of the nearby generators caused by the subharmonic excitations of the HVDC link. The fatigue life sensitivity works are also carried out to provide the recommendations for the safety operation. The optimal damper type and disposition scheme for depressing the resonant torque and prolonging the turbine lifetime is consequently motivated, which is based on participation factor of linear systems with the electromechanical analogy. The effectiveness of this scheme on suppressing vibration torque arising from network faults is also satisfying. In addition, the authors propose the new electromechanical supersynchronous resonance phenomenon for the turbine-generators near the inverter station owing to asymmetric line faults near the rectifier station. Secondly, the dramatic real and reactive power consumption during the melting period of an electrical arc furnace load. The voltage flicker pollution is mainly caused by the reactive power fluctuation while the stochastic subsynchronous oscillation in turbine mechanism is excited by the electromagnetic torque of the subsynchronous frequency which is induced by the real power fluctuation. Such a small stress imposed on the low-pressure long turbine blade combined with its evitable corrosive environment contributing to the corrosion fatigue effect. Although the voltage flicker severity at the point of common coupling is still within the limit, the blade may have been damaged from the long-term corrosion fatigue life expenditure estimation. In other words, the conventional voltage flicker limit established to make human-eye comfortable might not protect the blade from damaging risk. The long-term influence resulted from the electric arc furnace loads cannot always be neglected. It is necessary to take care of the blade material intensity and operating environment. If there is the potential of blade damage, one has to strengthen the output capacity at the power plant or separate the peak load durations among the steel plants to limit the over-fluctuation real power of the generator.
3

Improving the Torque Vibrations on Shafts and Blades of a Large-scale Steam Turbine Generator Set

Lin, Chi-Hshiung 20 July 2000 (has links)
Abstract Recently, the expansion in power system capacities leads to the development of large-scale steam turbine generator units. As a result, a fault on the power system may induce large fault current and give rise to serious torque vibrations on turbine shafts and blades, which ought to be improved in order for the reliable operation of a turbine-generator system. In the thesis, countermeasures are proposed from electrical viewing-point and from mechanical viewing-point respectively. Based on electrical viewing-point, the apparatus in the generator stator side and in the rotor side respectively is applied to suppress the induced disturbing source. The high temperature superconductive fault current limiter bank introduces a large normal-state resistance to restrict the dc component of stator fault current. The choke coil acts as a low pass filter to restrict the system-frequency component of field fault current. Both of them lead to the reduction in electromagnetic torque of system-frequency and effectively improve the vibrating behavior of blades. Based on mechanical viewing-point, it is found from the electromechanical analysis that the Generator/LP-Turbine shaft stiffness and the Generator rotor inertia constant determine the responses of all turbine blades. Once the stiffness on this shaft section is reduced by replacing the rigid shaft coupling with a flexible one or the inertia constant is augmented by a system-frequency mechanical filter, the blades become intrinsically less responsive to electrical disturbances. As a result, the blades will bear less stress impact and can be designed with smaller safety factor. On the other hand, LP-turbine long blades operated in corrosive environment and underwent the statistical stress impact due to randomly distributed negative sequence current is studied also. In such situation, the blades may be subjected to corrosion fatigue and the long term effects of power system unbalance may become the cause of fatigue damage on blades though the negative sequence current is still within the limitation of generator thermo-rating. As a result, turbine blades are possibly unprotected by traditional system unbalance protection scheme. Therefore, it will depend on the operating environments and the blade materials whether such long-term stress can be neglected or not. If there is the potential of blade damage, one has to reconsider the I2 protection settings and rearrange the load distribution to limit the system unbalance.

Page generated in 0.1116 seconds