• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fatigue Simulation of Human Cortical Bone using Non-Homogeneous Finite Element Models to Examine the Importance of Sizing Factors on Damage Laws

Ryan, Steven Francis 06 July 2006 (has links)
Finite element modeling has become a powerful tool in orthopedic biomechanics, allowing simulations with complex geometries. Current fatigue behavior simulations are unable to accurately predict the cycles to failure, creep, and damage or modulus loss even when applied to a bending model. It is thought that the inhomogeneity of the models may be the source of the problem. It has also been suggested that the volume size of the element will affect the fatigue behavior. This is called a stressed volume effect. In this thesis non-homogeneous finite element models were used to examine the effects of "sizing factors" on damage laws in fatigue simulations. Non-homogeneous finite element models were created from micro computed tomography (CT) images of dumbbell shaped fatigue samples. An automatic voxel meshing technique was used which converted the CT data directly into mesh geometry and material properties. My results showed that including these sizing factors improved the accuracy of the fatigue simulations on the non-homogeneous models. Using the Nelder-Mead optimization routine, I optimized the sizing factors for a group of 5 models. When these optimized sizing factors were applied to other models they improved the accuracy of the simulations but not as much as for the original models, but they improved the results more than with no sizing factors at all. I found that in our fatigue simulations we could account for the effects of stressed volume and inhomogeneity by including sizing factors in the life and damaging laws. / Master of Science

Page generated in 0.1268 seconds