• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 8
  • 8
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 67
  • 67
  • 19
  • 19
  • 17
  • 12
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

An investigation of optimum work-rest periods and their relation to the electromyographic measurement of the physiological cost of work for the forearm flexor muscles

Sherrow, Herbert Ray 08 1900 (has links)
No description available.
12

Fatigue testing of traffic signal structures using an eccentric-mass oscillator

Schabron, Christopher M. January 2009 (has links)
Thesis (M.S.)--University of Wyoming, 2009. / Title from PDF title page (viewed on Apr. 20, 2010). Includes bibliographical references (p. 102-103).
13

Multiaxial Fatigue Testing Machine

Liu, Mu-Hsin January 2002 (has links)
No description available.
14

Characterization of multiaxial fracture strength of transversely isotropic agot graphite

Hackerott, H. Alan January 2011 (has links)
Vita. / Digitized by Kansas Correctional Industries
15

Design of a machine for testing the fatigue strength of steel

Ridenour, James Otto. January 1947 (has links)
LD2668 .T4 1947 R5 / Master of Science
16

Multi-dimensional testing of sandwich aircraft panel

Murwamadala, Rabelani Dennis January 2015 (has links)
M. Tech. Mechanical Engineering / The increased use of composite materials in different industries has led to the realization of some of its benefits and disadvantages. One of the major problems, however, is the availability of biaxial test data for different composite materials. This is because structures during application face multi-axial stress states examples of such stress state scenarios include wind turbine blades and pressure vessels. This has also led to diverse range of test methods and material compositions such as combining different fibbers. The material used in this work is polymer matrix honeycomb sandwich panels. Sandwich panels are fabricated by attaching two thin stiff skins of fiber glass or carbon fiber reinforced laminates to a lightweight core. This work addresses some of the major advantages and disadvantages of this testing method. The main objective of this study is to develop a repeatable, cost effective and time efficient method for multi-axial testing of sandwich panels using existing resources.
17

A statistical analysis of the transition zone of the S-N curve for AISI 4340 steel

Kennedy, Neal Robert, 1945- January 1970 (has links)
No description available.
18

An analysis of fretting fatigue

Nowell, D. January 1988 (has links)
This thesis describes a series of fretting fatigue experiments carried out under closely controlled conditions of partial slip. These experiments confirm the existence of a size effect whereby the fretting fatigue life of an aluminium alloy is shown to vary with contact size. The configuration chosen, of cylindrical fretting pads contacting a plane specimen is amenable to classical stress analysis and the surface tractions between the contacting bodies are derived. The effects of tension in the specimen, finite specimen thickness, differing elastic constants, and surface roughness are all investigated and incorporated into the analysis where appropriate. A technique is then developed to calculate stress intensity factors for plane cracks growing under the contact load at an arbitrary angle to the free surface. The analysis is then applied to the experimental results and three possible explanations for the size effect are proposed, based on statistical effects, crack arrest, and crack initiation. These are examined in the light of the experimental evidence and it is proposed that the variation of fatigue life with contact size is due to an increase in the amount of fretting damage above a threshold level for crack initiation. A composite parameter is chosen to characterise the severity of fretting conditions and this is shown to describe the experimental results accurately. Finally, the use of this parameter in design calculations is discussed.
19

Stent Tester: Design and Application

Botadra, Dharam 01 May 2012 (has links)
Cardiovascular diseases which include high blood pressure, coronary heart diseases, heart failure, stroke and peripheral arterial diseases (PAD) affect one out of three American adults or 105 million people. By 2030, the prevalence of cardiovascular disease is estimated to rise 10 percent to more than 40 percent of American adults, or 116 million people. Approximately 8 million people in the United States have PAD, including 12-20% of individuals older than age 60. The main reason of PAD is obstruction of blood flow through lower extremities causing Atherosclerosis. The major artery affected in the lower extremities due to PAD is superficial femoral artery (SFA). Huge numbers of clinical procedures like superficial femoral artery stenting, balloon angioplasty, and percutaneous transluminal intervention are done to treat the disease. Thorough in vitro (biological phenomena made to occur outside the human body) testing of this kind should reduce the risk of in vivo (biological phenomena occurring inside the human body) stent failure and thus lead to increased survivability for patients suffering with cardiovascular diseases and PAD. It has been recognized that a metal subjected to a repetitive or fluctuating stress will fail at a stress much lower than that required to cause failure on a single application of load. As per literature review, typically SFA stents survive no more than 12-18 months until the first fracture is detected in MRI. There was a need of a customized designed device such that it would simulate realistic blood pressure conditions and test the capacity the SFA stents. Commercially, the stents are tested under accelerated cyclic loading conditions at different frequencies for longer cycle periods. In order to demonstrate how stents perform once deployed into an artery, a testing device was required which will simulate arterial blood pressure variations and compressive loads over artery as close as possible to human body. The stent tester documented in this report is capable of subjecting a stent to appropriate physiological loading by deploying it in a simulated vessel and subjecting it to external compression. Loading of this kind was performed at frequencies at 60 Hz and, as such, simulating one million heartbeats of artery pulsation. The primary purpose of this thesis was to successfully design stent tester which cycles artificial fluid simulating blood pressure in arteries and superimposing cyclic compression of stent deployed in an artificial artery. The goal was to obtain a test machine that allows for a cost effective testing of cardiovascular and peripheral stents. Another goal was to externally compress the arterial wall subjected to compressive load with the help of an air controlled mechanical piston attached with load cell assembly. The load cell measures the amount of load applied over the silicone tubing. The design of the device contains two peristaltic pumps which alternate pressure every second by pumping distilled water via plastic tubing. The stent was crimped with the guide wire catheter and deployed in the silicone artery (diameter 11mm O.D) from Dynatek labs. Wall and bridge stents (Medtronic, Schneider Inc.) 10 x 39 mm were used for testing with and without external load. Industrial pressure transducer S-10 (Wika Instruments Corporation) ranging from 0-5 PSI (0-259mmHg) is used to monitor the pressure in the artificial artery. The pressure transducer is connected to the data logger (Omega om320) which serially communicates with computer. The silicon mock test artery was 20cm long so that stents used in various arterial interventions can be tested. The silicon artery has primary advantages over rubber latex artery which are clarity and close resemblance to human artery and durable (ideal for long term durability tests). Preliminary results from literature review show that stent materials, based on its mechanical properties survive for more than one million heartbeats. To demonstrate the capacity of current design a nitinol stent was tested under physiological conditions at 60Hz frequency. A load of 980 grams for 2001 - 5000 heartbeats, 1.98 kg for 5001 - 10000 heartbeats, 4.25 kg for 10001 - 25000 heartbeats and 6.54 kg for 25001 - 50000 heartbeats was applied over the artificial artery. The mechanical piston with load cell assembly was allowed to externally compress the artificial artery. Partial functionality of device was demonstrated by running it for one million heartbeats and 48000 compressive cycles. The device was successfully designed and has the capacity to cycle artificial fluid simulating blood pressure changes in arteries and have demonstrated the ability to test any type of stents. The device was designed efficient which was simulated in an acceptable pressure range as compared to human blood pressure and allow for compression of stent in a cyclic testing pattern. The system was maintained to as close as between diastolic value of 76mmHg to diastolic 122mmHg pressure range. The device was run for about one million heartbeats and it was observed that the NiTi stent successfully survived. The stent was observed visually with a magnifying glass for any cracks or failure at intervals of 500, 1000, 2000, 5000, 10000, 25000, 50000 and one million heartbeats respectively. After running the device for one week at a frequency of 60Hz, no fractures on the stent were visually observed. However, the stent was deformed from the center. Data analysis showed that the mean diastolic and systolic pressure measurements for intervals with no load were found to be statistically significant i.e. in acceptable range. However, the device design lacks stability due to various reasons like device operates in an open looped system, has bubbles in the artificial artery which might be producing varying pressure values and variation in applying load. The device was partly unable to simulate arterial blood pressure changes under no loading conditions. Efforts are being made to improve the design of the device to make it realistic simulation of variation in arterial blood pressure for long term durable testing of the stents.
20

Characterising the stress-life response of mechanical formed AISI-1008 steel plate components

Müller, Ruan January 2012 (has links)
The main purpose of this research project was to determine the fatigue-life behaviour of AISI 1008 sheet steel which has been mechanically formed to a radius of curvature of 120mm and then to correlate the fatigue-life behaviour to that of the parent or “as manufactured” material. During the forming process it was felt important to induce plastic strain through stretch-bending by clamping the sides of a plate sample’s (width) edges in the bending fixture before being bent by a single acting mechanical press. It was determined through actual testing that there was a decrease in fatigue-life when the mechanical formed data was compared to fatigue data of the parent material. Standard fatigue mathematical models were used to relate the actual fatigue data. Due to the material being cold formed to a radius of curvature of 120mm, residual stresses induced during the forming process played an essential role during the fatigue-life prediction calculations. The maximum relieved stress in the parent material was compressive in nature having a magnitude of 11percent of the “as manufactured” yield strength (265 MPa). For the mechanical formed material compressive residual stresses were measured on the outer surface while tensile stresses were measured on the inner surface. The difference between actual number of cycles to failure to that calculated using the standard mathematical models for the parent material, ranged between 48 percent and 18 percent and for the mechanical formed samples between 35 percent and 1percent, depending on the strain amplitude used. An important aspect of this study was to determine the criteria required for mathematical modelling of the parent material as testing occurred between the limit of proportionality and yield point. Although this aspect requires further investigation the mathematical results obtained during this study were considered to be acceptable.

Page generated in 0.0849 seconds