Spelling suggestions: "subject:"fatty acid elongata"" "subject:"fatty acid elongación""
1 |
Cryptosporidium parvum: enhancing our understanding of its unique fatty acid metabolism and the elucidation of putative new inhibitorsFritzler, Jason Michael 10 October 2008 (has links)
Cryptosporidium parvum is widely known for outbreaks within the immunocompetent population, as well its sometimes excruciating effects as an opportunistic agent in AIDS patients. Our understanding of the biology and host-parasite interactions of this parasitic protist is increasing at a rapid rate due to recent molecular and genetic advances. The topic of our research is in the area of C. parvum fatty acid metabolism, which is highly streamlined in this parasite. In addition to a type I fatty acid synthase (CpFAS1), C. parvum also possesses an enormous type I polyketide synthase (CpPKS1). Because of the size of this megasynthase, functional characterization of the complete enzyme is not possible. We have isolated and characterized the loading unit of CpPKS1 which contains an acyl-[acyl carrier protein (ACP)] ligase (AL) and an ACP. This unit is responsible for the overall substrate selection and initiation of polyketide production. Our data show that CpPKS1 prefers long-chain fatty acids with the highest specificity for arachidic acid (C20). Thus, the final polyketide product could contain as many as 34 carbons. Additionally, C. parvum possesses only a single fatty acid elongase. This family of enzymes serves a mechanism similar to FAS, and many have been found to be involved in de novo fatty acid synthesis in other organisms. After expressing this membrane protein in human cells, we have determined that it too prefers long-chain fatty acyl-CoAs which undergo only one round of elongation. This is in contrast to members of this enzyme family in other organisms that can initiate de novo synthesis from two- or four-carbon fatty acids via several rounds of elongation. Our lab has previously characterized the unique acyl-CoA binding protein (CpACBP1) from C. parvum. Molecular and biochemical data suggested that this enzyme may serve as a viable drug target. We have screened a library of known (and somewhat common) compounds against CpACBP1, and have isolated several potential compounds to be further examined for their ability to inhibit the growth of C. parvum.
|
2 |
Cryptosporidium parvum: enhancing our understanding of its unique fatty acid metabolism and the elucidation of putative new inhibitorsFritzler, Jason Michael 10 October 2008 (has links)
Cryptosporidium parvum is widely known for outbreaks within the immunocompetent population, as well its sometimes excruciating effects as an opportunistic agent in AIDS patients. Our understanding of the biology and host-parasite interactions of this parasitic protist is increasing at a rapid rate due to recent molecular and genetic advances. The topic of our research is in the area of C. parvum fatty acid metabolism, which is highly streamlined in this parasite. In addition to a type I fatty acid synthase (CpFAS1), C. parvum also possesses an enormous type I polyketide synthase (CpPKS1). Because of the size of this megasynthase, functional characterization of the complete enzyme is not possible. We have isolated and characterized the loading unit of CpPKS1 which contains an acyl-[acyl carrier protein (ACP)] ligase (AL) and an ACP. This unit is responsible for the overall substrate selection and initiation of polyketide production. Our data show that CpPKS1 prefers long-chain fatty acids with the highest specificity for arachidic acid (C20). Thus, the final polyketide product could contain as many as 34 carbons. Additionally, C. parvum possesses only a single fatty acid elongase. This family of enzymes serves a mechanism similar to FAS, and many have been found to be involved in de novo fatty acid synthesis in other organisms. After expressing this membrane protein in human cells, we have determined that it too prefers long-chain fatty acyl-CoAs which undergo only one round of elongation. This is in contrast to members of this enzyme family in other organisms that can initiate de novo synthesis from two- or four-carbon fatty acids via several rounds of elongation. Our lab has previously characterized the unique acyl-CoA binding protein (CpACBP1) from C. parvum. Molecular and biochemical data suggested that this enzyme may serve as a viable drug target. We have screened a library of known (and somewhat common) compounds against CpACBP1, and have isolated several potential compounds to be further examined for their ability to inhibit the growth of C. parvum.
|
3 |
Molecular characterisation of differentially expressed genes in the interaction of barley and Rhynchosporium secalis.Jabbari, Jafar Sheikh January 2009 (has links)
The barley scald pathogen (Rhynchosporium secalis) causes extensive economic losses, not only through lost product and quality, but also due to costs associated with chemical control. Economic and environmental impacts and the emerging resistance to fungicides and dominant resistance genes are reasons to understand molecular defence responses in order to develop new strategies to increase resistance of barley to this pathogen. In most pathosystems, defence gene expression in susceptible or resistant genotypes commonly differs quantitatively. Thus, differentially expressed genes between genotypes contrasting for response to infection by pathogens are considered candidate genes that have a role in resistance. This thesis presents functional analysis of a subset of genes isolated from a Suppression Subtractive Hybridisation library. The library was previously established and enriched for differentially expressed genes in epidermis of resistant and susceptible near-isogenic barley cultivars inoculated with R. secalis. Functional characterisation involved both investigating their putitative biochemical function as well as the genes‟ role(s) in biotic and abiotic stress responses. Three cDNA clones from the library were selected based on the putative function of the encoded proteins and the full length of the clones and their homologues were isolated from cDNA and genomic DNA. One of the clones represented a member of the pathogenesis-related protein family 17 (PR-17). Southern hybridisation showed that a small multigene family encodes the barley PR-17 proteins. Three members were cloned with two of them being novel. The second clone was homologous to galactinol synthases (GolS) and Southern blot analysis indicated existence of two GolS genes in the barley genome and subsequently two HvGolS members were isolated. The last clone (a single gene) showed similarity to very long chain fatty acid elongases, which indicates its involvement in synthesis of cuticular waxes. A characterised Arabidopsis mutant named fiddlehead (Atfdh) was highly similar to this gene and it was named HvFdh. Detailed expression analysis using Q-PCR, Northern blot analysis and publically available microarray data revealed that the isolated genes are regulated in response to a variety of abiotic and biotic stresses as well as different tissues during barley development. Under some treatments expression patterns were consistent with their putative roles and in agreement with results of other studies. Nevertheless, in other treatments expression profiles were not in agreement with previous findings in other plants indicating potentially different stress adaptation mechanisms between species. Further insight into the function of the encoded proteins was gained by their subcellular localisation using transient expression as GFP fusion proteins followed by confocal laser scanning microscopy. The results were in agreement with in silico predictions and their putative cellular function. In addition, a comprehensive list of homologous genes from other species was compiled for each gene by using public EST databases. Analyses of phylogenetic relationship and multiple sequence alignment of the homologues provided further clues to their function and conserved regions of the proteins. HvPR-17 anti-fungal properties were investigated by heterologous protein expression in E. coli and subsequent in vitro bioassays using purified protein under different conditions against a number of phytopathogenic fungi. However, no anti-fungal activity was observed. A construct with the AtFdh promoter driving the coding region of barley Fiddlehead was used for complementation of the Arabidopsis fiddlehead mutant to investigate functional orthology between these genes from dicots and monocots. The Arabidopsis fiddlehead mutant phenotype that shows contact-mediated organ fusion, germination of spore on epidermis and reduced number of trichomes was completely reverted by HvFdh. Finally, more than fifty transgenic barley lines were regenerated over-expressing or suppressing one of the three genes. The analyses of the transgenic progeny exhibited some interesting developmental phenotypes and resistance to scald and drought tolerance. These lines are awaiting further experiments to investigate the effect of altered expression in conferring resistance to other pathogens and abiotic stress tolerance as well as biochemical analysis. Collectively, in this work six barley genes were cloned and characterised by a variety of in silico techniques, temporal and transient expression analyses, subcellular localisation, in vitro bioassays and mutant complementation in Arabidopsis and loss- and gain-of-function transgenic barley plants. This work has provided insight into the function of these gene families in barley. Furthermore, the data suggest that they are regulated by the defence response to pathogenic fungi as well as drought, salinity and frost in barley. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1375755 / Thesis (Ph.D.) - University of Adelaide, School of Agriculture, Food and Wine, 2009
|
Page generated in 0.059 seconds