1 |
Numerical modelling and visualization of the evolution of extensional fault systemsLongshaw, Stephen Michael January 2011 (has links)
The purpose of this work is split into two categories, the first was to analyse the application of real-time Physics Engine software libraries for use in calculating a geological numerical model. Second was the analysis of the applicability of glyph and implicit surface based visualization techniques to explore fault systems produced by the model. The current state of the art in Physics Engines was explored by redeveloping a Discrete Element Model to be calculated using NVIDIA's PhysX engine. Analyses regarding the suitability of the engine in terms of numerical accuracy and developmental capabilities is given, as well as the definition of a specialised and bespoke parallelisation technique. The use of various glyph based visualizations is explored to define a new standardised taxonomy for geological data and the MetaBall visualization technique was applied to reveal three dimensional fault structures as an implicit surface. Qualitative analysis was undertaken in the form of a user study, comprising of interviews with expert geologists. The processing pipeline used by many Physics Engines was found to be comparable to the design of Discrete Element Model software, however, aspects of their design, such as integration accuracy, limitation to single precision floating point and imposed limits on the scale of n-body problem means their suitability is restricted to specific modelling cases. Glyph and implicit surface based visualization have been shown to be an effective way to present a geological Discrete Element Model, with the majority of experts interviewed able to perceive the fault structures that it contained. Development of a new engine, or modification of one that exists in accordance with the findings of this thesis would result in a library extremely well suited to the problem of rigid-body simulation for the sciences.
|
2 |
Exploring Long-term Fault Evolution in Obliquely Loaded Systems Using Tabletop Experiments and Digital Image Correlation TechniquesToeneboehn, Kevin 27 October 2017 (has links)
This thesis focuses on the use of scaled physical experiments to better understand the development and long-term evolution of fault systems that are otherwise impossible to observe directly. The document is divided into three chapters. The first chapter documents the implementation of an inexpensive stereo vision method for acquiring high resolution three-dimensional strain data for table-top experiments. The second chapter applies the stereo vision method to a tectonic problem—the development of slip partitioning in obliquely loaded crustal systems. Slip partitioned fault systems accommodate oblique convergence with different slip rake on two or more faults and are well documented in the crust. In this chapter, we simulate oblique convergence using blocks with 30° dipping contacts under wet kaolin clay. The experiments reveal three styles of slip partitioning development—contingent upon convergence angle and the presence or absence of a pre-existing vertical fault. Across all experiments, the slip rates along slip-partitioned faults vary temporally suggesting that the faults continuously adjust to conditions produced by the other fault. The lack of steady state in the experiments suggests that slip-partitioned crustal systems may also evolve with oscillating behavior rather than developing a single efficient active fault structure to accommodate oblique convergence. The third chapter documents rheological tests of wet kaolin for applications to crustal deformation experiments. This chapter investigates thixotropy in the clay as well as the role of grain size distribution and water content on its shear strength.
|
3 |
The Earthquake Cycle of Strike-Slip FaultsSchmalzle, Gina Marie 14 December 2008 (has links)
An earthquake is a mechanism of stress release along plate boundaries due to relative motion between the Earth's lithospheric blocks. The period in which stresses are accruing across the plate boundary is known as the interseismic portion of the earthquake cycle. This dissertation focuses on interseismic portion of the earthquake cycle to extract characteristics of fault, shear zone and rock properties. Global Positioning System (GPS) data are used to observe the pattern of deformation across two primarily strike-slip fault systems: the Carrizo Segment of the San Andreas Fault (SAF) and the Eastern California Shear Zone (ECSZ). Two sets of GPS data are processed, analyzed and applied to analytic and numerical models describing the interseismic behavior of the earthquake cycle. The Carrizo segment is mature (i.e., had many earthquakes) and has juxtaposed terrains with varying rock properties laterally across the fault system. Lateral variations in rock properties affect the pattern of deformation around strike-slip faults and affect how surrounding rock deforms and if not considered may bias the interpretation of the faulted system. The Carrizo segment separates Franciscan terrain northeast of the fault from Salinian block to the southwest. GPS data are well fit to a model with a 15-25 km weak zone northeast of the Carrizo segment. The long-term slip rate estimated on the SAF is 34-38 mm/yr, with 2-4 mm/yr accommodated on faults to the west. The viscosity for the combined lower crust/upper mantle is estimated at 2-5x10^19 Pa s. This model is consistent with the distribution of rock type and corresponding laboratory data on their material properties, paleoseismic, seismic and magnetotelluric data. The ECSZ is a young (<10 >Myr) system of strike-slip faults including the Owens Valley - Airport Lake, Panamint Valley - Ash Hill - Hunter Mountain and Death Valley - Furnace Creek fault systems. The ECSZ study concentrates on fault evolution by finding the current position of maximum shear across the shear zone and estimating fault rates. Geologic studies suggest that the Death Valley - Furnace Creek fault system on eastern end of the ECSZ was the primary accommodator of slip early in the ECSZ history. This study suggests that the current locus of shear has shifted westward, and resides in the center of the ECSZ under the Panamint Valley - Ash Hill -Hunter Mountain fault system. The model dependent estimated geodetic rate of the Ash Hill - Panamint Valley -Hunter Mountain fault system (4.91-6.11 mm/yr) is faster than geologic estimates (1.6 - 4 mm/yr). The result is interpreted as a simplification of the ECSZ with time, combined with progressive westward migration of deformation. The best estimate for a combined rate across the shear zone is 10 mm/yr (20% of total Pacific-North America motion). The summation of rates obtained by this study is 49 mm/yr, well within estimates obtained by previous studies using independent techniques.
|
Page generated in 0.0681 seconds