• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Europium and samarium doped fluorochlorozirconate (FCZ) glasses for optoelectronics applications: thermal and optical properties

Panigrahi, Sujata 23 August 2011
<p>Fluorochlorozirconate (FCZ) glasses are a member of heavy metal fluoride glasses, and are derived from a well known ZBLAN glass. In this work, halogen salts of europium (Eu<sup>2+</sup>) and samarium (Sm<sup>3+</sup>) are used as dopants in FCZ glasses. FCZ glasses doped with Eu<sup>2+</sup> and Sm<sup>3+</sup> can be used in high resolution x-ray imaging for tissue scanning, and have been shown to behave as storage phosphors and/or x-ray scintillators.</p> <p>Glass transition (T<sub>g</sub>), heat capacity (C<sub>p</sub>) and glass crystallization (T<sub>c</sub>) properties of Eu<sup>2+</sup> and Sm<sup>3+</sup> doped and undoped FCZ glasses with different amounts of relative Cl concentration, that is, with respect to the total Cl and F concentration have been investigated by conventional differential scanning calorimetry (DSC) and modulated differential scanning calorimetry (MDSC) techniques. MDSC experiments were performed at different heating rates to analyze the complex transitions and to get a better resolution of any overlapping transitions. The crystallization kinetics have also been studied by applying the Kissinger technique to multiple DSC scans in order to determine the thermal stability of FCZ glass samples used in this work. The apparent activation energy for the crystallization process was obtained by the crystallization peak temperature shift method in the conventional DSC mode. The specific heat capacity (C<sub>p</sub>) has been measured as a function of composition, and the glass transition temperature (T<sub>g</sub>) is evaluated from the smooth change in the heat capacity curve during the glass transformation. The observation of two possible glass transitions points to the presence of two phases in these FCZ glasses with higher relative Cl content.</p> <p>Optical transmission spectra of both doped and undoped FCZ glass samples have been measured by infrared spectroscopy and optical band gaps corresponding to an absorption coefficient of 10<sup>3</sup> cm<sup>-1</sup> have been determined. A good correlation between X-ray luminescence and the glass structure is observed. While the integrated photoluminescence intensity increases linearly with the Sm<sup>3+</sup> concentration, the integrated X-ray luminescence increases sublinearly. The importance of appropriate annealing conditions, such as temperature, time and ambient atmosphere, and their effect on the X-ray luminescence of rare earth (RE) doped FCZ glass samples have been investigated. Annealing conditions influence the formation of BaCl<sub>2</sub> nanocrystals in the glass and the properties of the resulting FCZ glass ceramics.</p>
2

Europium and samarium doped fluorochlorozirconate (FCZ) glasses for optoelectronics applications: thermal and optical properties

Panigrahi, Sujata 23 August 2011 (has links)
<p>Fluorochlorozirconate (FCZ) glasses are a member of heavy metal fluoride glasses, and are derived from a well known ZBLAN glass. In this work, halogen salts of europium (Eu<sup>2+</sup>) and samarium (Sm<sup>3+</sup>) are used as dopants in FCZ glasses. FCZ glasses doped with Eu<sup>2+</sup> and Sm<sup>3+</sup> can be used in high resolution x-ray imaging for tissue scanning, and have been shown to behave as storage phosphors and/or x-ray scintillators.</p> <p>Glass transition (T<sub>g</sub>), heat capacity (C<sub>p</sub>) and glass crystallization (T<sub>c</sub>) properties of Eu<sup>2+</sup> and Sm<sup>3+</sup> doped and undoped FCZ glasses with different amounts of relative Cl concentration, that is, with respect to the total Cl and F concentration have been investigated by conventional differential scanning calorimetry (DSC) and modulated differential scanning calorimetry (MDSC) techniques. MDSC experiments were performed at different heating rates to analyze the complex transitions and to get a better resolution of any overlapping transitions. The crystallization kinetics have also been studied by applying the Kissinger technique to multiple DSC scans in order to determine the thermal stability of FCZ glass samples used in this work. The apparent activation energy for the crystallization process was obtained by the crystallization peak temperature shift method in the conventional DSC mode. The specific heat capacity (C<sub>p</sub>) has been measured as a function of composition, and the glass transition temperature (T<sub>g</sub>) is evaluated from the smooth change in the heat capacity curve during the glass transformation. The observation of two possible glass transitions points to the presence of two phases in these FCZ glasses with higher relative Cl content.</p> <p>Optical transmission spectra of both doped and undoped FCZ glass samples have been measured by infrared spectroscopy and optical band gaps corresponding to an absorption coefficient of 10<sup>3</sup> cm<sup>-1</sup> have been determined. A good correlation between X-ray luminescence and the glass structure is observed. While the integrated photoluminescence intensity increases linearly with the Sm<sup>3+</sup> concentration, the integrated X-ray luminescence increases sublinearly. The importance of appropriate annealing conditions, such as temperature, time and ambient atmosphere, and their effect on the X-ray luminescence of rare earth (RE) doped FCZ glass samples have been investigated. Annealing conditions influence the formation of BaCl<sub>2</sub> nanocrystals in the glass and the properties of the resulting FCZ glass ceramics.</p>

Page generated in 0.0231 seconds