• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stochastic Newton Methods With Enhanced Hessian Estimation

Reddy, Danda Sai Koti January 2017 (has links) (PDF)
Optimization problems involving uncertainties are common in a variety of engineering disciplines such as transportation systems, manufacturing, communication networks, healthcare and finance. The large number of input variables and the lack of a system model prohibit a precise analytical solution and a viable alternative is to employ simulation-based optimization. The idea here is to simulate a few times the stochastic system under consideration while updating the system parameters until a good enough solution is obtained. Formally, given only noise-corrupted measurements of an objective function, we wish to end a parameter which minimises the objective function. Iterative algorithms using statistical methods search the feasible region to improve upon the candidate parameter. Stochastic approximation algorithms are best suited; most studied and applied algorithms for funding solutions when the feasible region is a continuously valued set. One can use information on the gradient/Hessian of the objective to aid the search process. However, due to lack of knowledge of the noise distribution, one needs to estimate the gradient/Hessian from noisy samples of the cost function obtained from simulation. Simple gradient search schemes take much iteration to converge to a local minimum and are heavily dependent on the choice of step-sizes. Stochastic Newton methods, on the other hand, can counter the ill-conditioning of the objective function as they incorporate second-order information into the stochastic updates. Stochastic Newton methods are often more accurate than simple gradient search schemes. We propose enhancements to the Hessian estimation scheme used in two recently proposed stochastic Newton methods, based on the ideas of random directions stochastic approximation (2RDSA) [21] and simultaneous perturbation stochastic approximation (2SPSA-31) [6], respectively. The proposed scheme, inspired by [29], reduces the error in the Hessian estimate by (i) Incorporating a zero-mean feedback term; and (ii) optimizing the step-sizes used in the Hessian recursion. We prove that both 2RDSA and 2SPSA-3 with our Hessian improvement scheme converges asymptotically to the true Hessian. The key advantage with 2RDSA and 2SPSA-3 is that they require only 75% of the simulation cost per-iteration for 2SPSA with improved Hessian estimation (2SPSA-IH) [29]. Numerical experiments show that 2RDSA-IH outperforms both 2SPSA-IH and 2RDSA without the improved Hessian estimation scheme.
2

A Comparative Evaluation Of Fdsa,ga, And Sa Non-linear Programming Algorithms And Development Of System-optimal Methodology For Dynamic Pricing On I-95 Express

Graham, Don 01 January 2013 (has links)
As urban population across the globe increases, the demand for adequate transportation grows. Several strategies have been suggested as a solution to the congestion which results from this high demand outpacing the existing supply of transportation facilities. High –Occupancy Toll (HOT) lanes have become increasingly more popular as a feature on today’s highway system. The I-95 Express HOT lane in Miami Florida, which is currently being expanded from a single Phase (Phase I) into two Phases, is one such HOT facility. With the growing abundance of such facilities comes the need for indepth study of demand patterns and development of an appropriate pricing scheme which reduces congestion. This research develops a method for dynamic pricing on the I-95 HOT facility such as to minimize total travel time and reduce congestion. We apply non-linear programming (NLP) techniques and the finite difference stochastic approximation (FDSA), genetic algorithm (GA) and simulated annealing (SA) stochastic algorithms to formulate and solve the problem within a cell transmission framework. The solution produced is the optimal flow and optimal toll required to minimize total travel time and thus is the system-optimal solution. We perform a comparative evaluation of FDSA, GA and SA non-linear programming algorithms used to solve the NLP and the ANOVA results show that there are differences in the performance of the NLP algorithms in solving this problem and reducing travel time. We then conclude by demonstrating that econometric iv forecasting methods utilizing vector autoregressive (VAR) techniques can be applied to successfully forecast demand for Phase 2 of the 95 Express which is planned for 2014

Page generated in 0.0497 seconds