11 |
A study on machine learning algorithms for fall detection and movement classificationRalhan, Amitoz Singh 04 January 2010
Fall among the elderly is an important health issue. Fall detection and movement tracking techniques are therefore instrumental in dealing with this issue. This thesis responds to the
challenge of classifying different movement types as a part of a system designed to fulfill the need for a wearable device to collect data for fall and near-fall analysis. Four different fall activities (forward, backward, left and right),
three normal activities (standing, walking and lying down) and near-fall situations are identified and detected. Different machine
learning algorithms are compared and the best one is used for the real time classification. The comparison is made using Waikato Environment for Knowledge Analysis or in short WEKA. The system also has the ability to adapt to different gaits of different people. A feature selection algorithm is also introduced to reduce the number
of features required for the classification problem.
|
12 |
A study on machine learning algorithms for fall detection and movement classificationRalhan, Amitoz Singh 04 January 2010 (has links)
Fall among the elderly is an important health issue. Fall detection and movement tracking techniques are therefore instrumental in dealing with this issue. This thesis responds to the
challenge of classifying different movement types as a part of a system designed to fulfill the need for a wearable device to collect data for fall and near-fall analysis. Four different fall activities (forward, backward, left and right),
three normal activities (standing, walking and lying down) and near-fall situations are identified and detected. Different machine
learning algorithms are compared and the best one is used for the real time classification. The comparison is made using Waikato Environment for Knowledge Analysis or in short WEKA. The system also has the ability to adapt to different gaits of different people. A feature selection algorithm is also introduced to reduce the number
of features required for the classification problem.
|
13 |
Air Visibility Forecasting via Artificial Neural Networks and Feature Selection TechniquesYang, Tun-Hsiang 01 August 2003 (has links)
none
|
14 |
Small sample feature selectionSima, Chao 17 September 2007 (has links)
High-throughput technologies for rapid measurement of vast numbers of biolog-
ical variables offer the potential for highly discriminatory diagnosis and prognosis;
however, high dimensionality together with small samples creates the need for fea-
ture selection, while at the same time making feature-selection algorithms less reliable.
Feature selection is required to avoid overfitting, and the combinatorial nature of the
problem demands a suboptimal feature-selection algorithm.
In this dissertation, we have found that feature selection is problematic in small-
sample settings via three different approaches. First we examined the feature-ranking
performance of several kinds of error estimators for different classification rules, by
considering all feature subsets and using 2 measures of performance. The results
show that their ranking is strongly affected by inaccurate error estimation. Secondly,
since enumerating all feature subsets is computationally impossible in practice, a
suboptimal feature-selection algorithm is often employed to find from a large set of
potential features a small subset with which to classify the samples. If error estimation
is required for a feature-selection algorithm, then the impact of error estimation can
be greater than the choice of algorithm. Lastly, we took a regression approach by
comparing the classification errors for the optimal feature sets and the errors for
the feature sets found by feature-selection algorithms. Our study shows that it is
unlikely that feature selection will yield a feature set whose error is close to that of
the optimal feature set, and the inability to find a good feature set should not lead to the conclusion that good feature sets do not exist.
|
15 |
Voice and lip based speaker verificationPandit, Medha January 2000 (has links)
No description available.
|
16 |
Feature selection via joint likelihoodPocock, Adam Craig January 2012 (has links)
We study the nature of filter methods for feature selection. In particular, we examine information theoretic approaches to this problem, looking at the literature over the past 20 years. We consider this literature from a different perspective, by viewing feature selection as a process which minimises a loss function. We choose to use the model likelihood as the loss function, and thus we seek to maximise the likelihood. The first contribution of this thesis is to show that the problem of information theoretic filter feature selection can be rephrased as maximising the likelihood of a discriminative model. From this novel result we can unify the literature revealing that many of these selection criteria are approximate maximisers of the joint likelihood. Many of these heuristic criteria were hand-designed to optimise various definitions of feature "relevancy" and "redundancy", but with our probabilistic interpretation we naturally include these concepts, plus the "conditional redundancy", which is a measure of positive interactions between features. This perspective allows us to derive the different criteria from the joint likelihood by making different independence assumptions on the underlying probability distributions. We provide an empirical study which reinforces our theoretical conclusions, whilst revealing implementation considerations due to the varying magnitudes of the relevancy and redundancy terms. We then investigate the benefits our probabilistic perspective provides for the application of these feature selection criteria in new areas. The joint likelihood automatically includes a prior distribution over the selected feature sets and so we investigate how including prior knowledge affects the feature selection process. We can now incorporate domain knowledge into feature selection, allowing the imposition of sparsity on the selected feature set without using heuristic stopping criteria. We investigate the use of priors mainly in the context of Markov Blanket discovery algorithms, in the process showing that a family of algorithms based upon IAMB are iterative maximisers of our joint likelihood with respect to a particular sparsity prior. We thus extend the IAMB family to include a prior for domain knowledge in addition to the sparsity prior. Next we investigate what the choice of likelihood function implies about the resulting filter criterion. We do this by applying our derivation to a cost-weighted likelihood, showing that this likelihood implies a particular cost-sensitive filter criterion. This criterion is based on a weighted branch of information theory and we prove several novel results justifying its use as a feature selection criterion, namely the positivity of the measure, and the chain rule of mutual information. We show that the feature set produced by this cost-sensitive filter criterion can be used to convert a cost-insensitive classifier into a cost-sensitive one by adjusting the features the classifier sees. This can be seen as an analogous process to that of adjusting the data via over or undersampling to create a cost-sensitive classifier, but with the crucial difference that it does not artificially alter the data distribution. Finally we conclude with a summary of the benefits this loss function view of feature selection has provided. This perspective can be used to analyse other feature selection techniques other than those based upon information theory, and new groups of selection criteria can be derived by considering novel loss functions.
|
17 |
Improving a Smartphone Wearable Mobility Monitoring System with Feature Selection and Transition RecognitionCapela, Nicole Alexandra January 2015 (has links)
Modern smartphones contain multiple sensors and long lasting batteries, making them ideal platforms for mobility monitoring. Mobility monitoring can provide rehabilitation professionals with an objective portrait of a patient’s daily mobility habits outside of a clinical setting.
The objective of this thesis was to improve the performance of the human activity recognition within a custom Wearable Mobility Measurement System (WMMS). Performance of a current WMMS was evaluated on able-bodied and stroke participants to identify areas in need of improvement and differences between populations. Signal features for the waist-worn smartphone WMMS were selected using classifier-independent methods to identify features that were useful across populations. The newly selected features and a transition state recognition method were then implemented before evaluating the improved WMMS system’s activity recognition performance.
This thesis demonstrated: 1) diverse population data is important for WMMS system design; 2) certain signal features are useful for human activity recognition across diverse populations; 3) the use of carefully selected features and transition state identification can provide accurate human activity recognition results without computationally complex methods.
|
18 |
Modern variable selection techniques in the generalised linear model with application in BiostatisticsMillard, Salomi 10 1900 (has links)
In a Biostatistics environment, the datasets to be analysed are frequently high-dimensional and multicollinearity is expected due to the nature of the features. However, many traditional approaches to statistical analysis and feature selection cease to be useful in the presence of high-dimensionality and multicollinearity. Penalised regression methods have proved to be practical and attractive for dealing with these problems. In this dissertation, we propose a new penalised approach, the modified elastic-net (MEnet), for statistical analysis and feature selection using a combination of the ridge and bridge penalties. This
method is designed to deal with high-dimensional problems with highly correlated predictor variables. Furthermore, it has a closed-form solution, unlike the most frequently used penalised techniques, which makes it simple to implement on high-dimensional data. We show how this approach can be used to analyse high-dimensional data with binary responses, e.g., microarray data, and simultaneously select significant features. An extensive simulation study and analysis of a colon cancer dataset demonstrate the properties and practical aspects of the proposed method. / Mini Dissertation (MSc (Advanced Data Analytics))--University of Pretoria, 2020. / DSI-CSIR Interbursary Support (IBS) Programme / Statistics Industry HUB, Department of Statistics, University of Pretoria / Statistics / MSc / Restricted
|
19 |
Machine Learning Identification of Protein Properties Useful for Specific ApplicationsKhamis, Abdullah M. 31 March 2016 (has links)
Proteins play critical roles in cellular processes of living organisms. It is therefore important to identify and characterize their key properties associated with their functions. Correlating protein’s structural, sequence and physicochemical properties of its amino acids (aa) with protein functions could identify some of the critical factors governing the specific functionality. We point out that not all functions of even well studied proteins are known. This, complemented by the huge increase in the number of newly discovered and predicted proteins, makes challenging the experimental characterization of the whole spectrum of possible protein functions for all proteins of interest. Consequently, the use of computational methods has become more attractive.
Here we address two questions. The first one is how to use protein aa sequence and physicochemical properties to characterize a family of proteins. The second one focuses on how to use transcription factor (TF) protein’s domains to enhance accuracy of predicting TF DNA binding sites (TFBSs).
To address the first question, we developed a novel method using computational representation of proteins based on characteristics of different protein regions (N-terminal, M-region and C-terminal) and combined these with the properties of protein aa sequences. We show that this description provides important biological insight about characterization of the protein functional groups. Using feature selection techniques, we identified key properties of proteins that allow for very accurate characterization of different protein families. We demonstrated efficiency of our method in application to a number of antimicrobial peptide families.
To address the second question we developed another novel method that uses a combination of aa properties of DNA binding domains of TFs and their TFBS properties to develop machine learning models for predicting TFBSs. Feature selection is used to identify the most relevant characteristics of the aa for such modeling. In addition to reducing the number of required models to only 14 for several hundred TFs, the final prediction accuracy of our models appears dramatically better than with other methods.
Overall, we show how to efficiently utilize properties of proteins in deriving more accurate solutions for two important problems of computational biology and bioinformatics.
|
20 |
Evaluating and enhancing the security of cyber physical systems using machine learning approachesSharma, Mridula 08 April 2020 (has links)
The main aim of this dissertation is to address the security issues of the physical layer of Cyber Physical Systems. The network security is first assessed using a 5-level Network Security Evaluation Scheme (NSES).
The network security is then enhanced using a novel Intrusion Detection System that is designed using Supervised Machine Learning. Defined as a complete architecture, this framework includes a complete packet analysis of radio traffic of Routing Protocol for Low-Power and Lossy Networks (RPL). A dataset of 300 different simulations of RPL network is defined for normal traffic, hello flood attack, DIS attack, increased version attack and decreased rank attack. The IDS is a multi-model detection model that provides an efficient detection against the known as well as new attacks.
The model analysis is done with the cross-validation method as well as using the new data from a similar network. To detect the known attacks, the model performed at 99% accuracy rate and for the new attack, 85% accuracy is achieved. / Graduate
|
Page generated in 0.1233 seconds