• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 6
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Multiple-antenna Communications with Limited Channel State Information

Khoshnevis, Behrouz 14 November 2011 (has links)
Due to its significant advantage in spectral efficiency, multiple-antenna communication technology will undoubtedly be a major component in future wireless system implementations. However, the full exploitation of this technology also requires perfect feedback of channel state information (CSI) to the transmitter-- something that is not practically feasible. This motivates the study of limited feedback systems, where CSI feedback is rate limited. This thesis focuses on the optimal design of limited feedback systems for three types of communication channels: the relay channel, the single-user point-to-point channel, and the multiuser broadcast channel. For the relay channel, we prove the efficiency of the Grassmannian codebooks as the source and relay beamforming codebooks, and propose a method for CSI exchange between the relay and the destination when global CSI is not available at destination. For the single-user point-to-point channel, we study the joint power control and beamforming problem and address the channel magnitude and direction quantization codebook design problem. It is shown that uniform quantization of the channel magnitude (in dB scale) is asymptotically optimal regardless of the channel distribution. The analysis further derives the optimal split of feedback bandwidth between the magnitude and direction quantization codebooks. For the multiuser broadcast channel, we first prove the sufficiency of a product magnitude-direction quantization codebook for managing the multiuser interference. We then derive the optimal split of feedback bandwidth across the users and their magnitude and direction codebooks. The optimization results reveal an inherent structural difference between the single-user and multiuser quantization codebooks: a multiuser codebook should have a finer direction quantization resolution as compared to a single-user codebook. It is further shown that the users expecting higher rates and requiring more reliable communication should provide a finer quantization of their CSI. Finally, we determine the minimum required total feedback rate based on users' quality-of-service constraints and derive the scaling of the system performance with the total feedback rate.
12

Multiple-antenna Communications with Limited Channel State Information

Khoshnevis, Behrouz 14 November 2011 (has links)
Due to its significant advantage in spectral efficiency, multiple-antenna communication technology will undoubtedly be a major component in future wireless system implementations. However, the full exploitation of this technology also requires perfect feedback of channel state information (CSI) to the transmitter-- something that is not practically feasible. This motivates the study of limited feedback systems, where CSI feedback is rate limited. This thesis focuses on the optimal design of limited feedback systems for three types of communication channels: the relay channel, the single-user point-to-point channel, and the multiuser broadcast channel. For the relay channel, we prove the efficiency of the Grassmannian codebooks as the source and relay beamforming codebooks, and propose a method for CSI exchange between the relay and the destination when global CSI is not available at destination. For the single-user point-to-point channel, we study the joint power control and beamforming problem and address the channel magnitude and direction quantization codebook design problem. It is shown that uniform quantization of the channel magnitude (in dB scale) is asymptotically optimal regardless of the channel distribution. The analysis further derives the optimal split of feedback bandwidth between the magnitude and direction quantization codebooks. For the multiuser broadcast channel, we first prove the sufficiency of a product magnitude-direction quantization codebook for managing the multiuser interference. We then derive the optimal split of feedback bandwidth across the users and their magnitude and direction codebooks. The optimization results reveal an inherent structural difference between the single-user and multiuser quantization codebooks: a multiuser codebook should have a finer direction quantization resolution as compared to a single-user codebook. It is further shown that the users expecting higher rates and requiring more reliable communication should provide a finer quantization of their CSI. Finally, we determine the minimum required total feedback rate based on users' quality-of-service constraints and derive the scaling of the system performance with the total feedback rate.
13

PhD Thesis

Junghoon Kim (15348493) 26 April 2023 (has links)
<p>    </p> <p>In order to advance next-generation communication systems, it is critical to enhance the state-of-the-art communication architectures, such as device-to-device (D2D), multiple- input multiple-output (MIMO), and intelligent reflecting surface (IRS), in terms of achieving high data rate, low latency, and high energy efficiency. In the first part of this dissertation, we address joint learning and optimization methodologies on cutting-edge network archi- tectures. First, we consider D2D networks equipped with MIMO systems. In particular, we address the problem of minimizing the network overhead in D2D networks, defined as the sum of time and energy required for processing tasks at devices, through the design for MIMO beamforming and communication/computation resource allocation. Second, we address IRS-assisted communication systems. Specifically, we study an adaptive IRS control scheme considering realistic IRS reflection behavior and channel environments, and propose a novel adaptive codebook-based limited feedback protocol and learning-based solutions for codebook updates. </p> <p><br></p> <p>Furthermore, in order for revolutionary innovations to emerge for future generations of communications, it is crucial to explore and address fundamental, long-standing open problems for communications, such as the design of practical codes for a variety of important channel models. In the later part of this dissertation, we study the design of practical codes for feedback-enabled communication channels, i.e., feedback codes. The existing feedback codes, which have been developed over the past six decades, have been demonstrated to be vulnerable to high forward/feedback noises, due to the non-triviality of the design of feedback codes. We propose a novel recurrent neural network (RNN) autoencoder-based architecture to mitigate the susceptibility to high channel noises by incorporating domain knowledge into the design of the deep learning architecture. Using this architecture, we suggest a new class of non-linear feedback codes that increase robustness to forward/feedback noise in additive White Gaussian noise (AWGN) channels with feedback. </p>

Page generated in 0.0441 seconds