• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Challenges of regional hydrological modelling in the Elbe River basin : investigations about model fidelity on sub-catchment level

Conradt, Tobias January 2013 (has links)
Within a research project about future sustainable water management options in the Elbe River basin, quasi-natural discharge scenarios had to be provided. The semi-distributed eco-hydrological model SWIM was utilised for this task. According to scenario simulations driven by the stochastical climate model STAR, the region would get distinctly drier. However, this thesis focuses on the challenge of meeting the requirement of high model fidelity even for smaller sub-basins. Usually, the quality of the simulations is lower at inner points than at the outlet. Four research paper chapters and the discussion chapter deal with the reasons for local model deviations and the problem of optimal spatial calibration. Besides other assessments, the Markov Chain Monte Carlo method is applied to show whether evapotranspiration or precipitation should be corrected to minimise runoff deviations, principal component analysis is used in an unusual way to evaluate local precipitation alterations by land cover changes, and remotely sensed surface temperatures allow for an independent view on the evapotranspiration landscape. The overall insight is that spatially explicit hydrological modelling of such a large river basin requires a lot of local knowledge. It probably needs more time to obtain such knowledge as is usually provided for hydrological modelling studies. / Innerhalb eines Forschungsprojekts zu zukünftigen nachhaltigen Optionen der Wasserwirtschaft im Elbe-Einzugsgebiet mußten quasi-natürliche Abflußszenarien bereitgestellt werden. Zu diesem Zweck wurde das räumlich diskretisierte ökohydrologische Modell SWIM eingesetzt. Nach den von dem stochastischen Klimamodell STAR angetriebenen Szenariosimulationen würde die Region deutlich trockener werden. Allerdings ist das Hauptthema dieser Dissertation die Herausforderung, die Ansprüche an hohe Modelltreue auch für kleinere Teileinzugsgebiete zu erfüllen. Normalerweise ist die Qualität der Simulationen für innere Punkte geringer als am Gebietsauslaß. Vier Fachartikel-Kapitel und das Diskussionskapitel beschäftigen sich mit den Gründen für lokale Modellabweichungen und dem Problem optimaler räumlicher Kalibrierung. Unter anderem wird die Markovketten-Monte-Carlo-Methode angewendet, um zu zeigen, ob Verdunstung oder Niederschlag korrigiert werden sollte, um Abweichungen des Abflusses zu minimieren, die Hauptkomponentenanalyse wird auf eine unübliche Weise benutzt, um lokale Niederschlagsänderungen aufgrund von Landnutzungsänderungen zu untersuchen, und fernerkundete Oberflächentemperaturen erlauben eine unabhängige Sicht auf die Verdunstungslandschaft. Die grundlegende Erkenntnis ist, daß die räumlich explizite hydrologische Modellierung eines so großen Flußeinzugsgebiets eine Menge Vor-Ort-Wissen erfordert. Wahrscheinlich wird mehr Zeit benötigt, solches Wissen zu erwerben, als üblicherweise für hydrologische Modellstudien zur Verfügung steht.
2

Automatic classification of treatment-deviation sources in proton therapy using prompt-gamma-imaging information

Khamfongkhruea, Chirasak 24 September 2021 (has links)
Prompt-gamma imaging (PGI) was proposed in the 2000s as a promising in vivo range-verification method to maintain the physical advantage of proton beams by reducing unwanted range-uncertainties. Recently, PGI with a slit camera has been successfully implemented in clinical application. Despite its high accuracy and sensitivity to range deviation being shown in several studies, the clinical benefits of PGI have not yet been investigated. Hence, to fully exploit the advantages of PGI, this thesis aims to investigate the feasibility of PGI-based range verification for the automatic classification of treatment deviations and differentiation of relevant from non-relevant changes in the treatment of head-and-neck (H&N) tumors. In the first part of this thesis, the four most common types of treatment deviations in proton therapy (PT) were investigated regarding their PGI signature and by considering clinically relevant and non-relevant scenarios. A heuristic decision tree (DT) model was iteratively developed. To gain understanding of the specific signature of the error sources, different levels of geometrical complexities were explored, from simple to complex. At the simplest level, a phantom with homogeneous density was used to distinguish range-prediction and setup errors. Next, in the intermediate complexity level, a phantom with heterogeneous density was used to inspect the additional error scenarios of anatomical changes. Finally, real patient CT scans were used to investigate the relevance of changes based on clinical constraints. In the final model, a five-step filtering approach was used during pre-processing to select reliable pencil-beam-scanning spots for range verification. In this study, five features extracted from the filtered PGI data were used to classify the treatment deviation. The model is able distinguish four introduced scenarios into six classes as follows: (1) overestimation of range prediction, (2) underestimation of range prediction, (3) setup error with larger air gap, (4) setup error with smaller air gap, (5) anatomical change, and (6) non-relevant change. To ensure the application was effective, independent patient CT datasets were used to test the model. The results yielded an excellent performance of the DT classifier, with high accuracy, sensitivity, and specificity of 96%, 100%, and 85.7%, respectively. According to these findings, this model can sensitively detect treatment deviations in PT based on simulated PGI data. In the second part of this work, an alternative approach based on machine learning (ML) was taken to automatically classify the error sources. In the first stage, the two approaches were compared, using the same features as well as the same training and test datasets. The results show that the ML approach was slightly better than the heuristic DT approach in terms of accuracy. However, the performance of both approaches was excellent for the individual scenarios. Thus, these results confirm that the PGI-based data classification with five features can be applied to detect individual sources of treatment deviation in PT. In the second stage, there was an investigation of more complex and more realistic combinations of error scenarios, which was out of the scope of the DT approach. The results demonstrated that the performance of the ML-based classifiers declined in general. Furthermore, the additional features of the PG shift did not substantially improve the performance of the classifiers. As a consequence, these findings mark important issues for future research. Potentially, usage of the spatial information from the spot-based PGI data and more complex techniques such as deep learning may improve the performance of classifiers with respect to scenarios with multiple error sources. However, regardless of this, it is recommended that these findings be confirmed and validated in simulations under measurement-like conditions or with real PG measurements of H&N patients themselves. Moreover, this classification model could eventually be tested with other body sites and entities in order to assess its compatibility and adaptation requirements. In summary, this study yielded promising results regarding the automatic classification of treatment-deviation sources and the differentiation of relevant and non-relevant changes in H&N-tumor treatment in PT with PGI data. This simulation study marks an important step towards fully automated PGI-based proton-range verification, which could contribute to closing the treatment-workflow loop of adaptive therapy by supporting clinical decision-making and, ultimately, improving clinical PT.:1 Introduction 2 Background 2.1 Proton therapy 2.1.1 Rationale for proton therapy 2.1.2 Uncertainties and their mitigation 2.2 In vivo range-verification techniques 2.2.1 Range probing 2.2.2 Proton tomography 2.2.3 Magnetic resonance imaging 2.2.4 Ionoacoustic detection 2.2.5 Treatment-activated positron-emission tomography imaging 2.2.6 Prompt-gamma based detection 3 Prompt-gamma imaging with a knife-edged slit camera 3.1 Current state-of-the-art 3.2 Prompt-gamma camera system 3.3 Data acquisition and analysis 4 Error-source classification using heuristic decision tree approach 4.1 Study design 4.1.1 Case selection 4.1.2 Investigated scenarios 4.1.3 Prompt-gamma simulation and range shift determination 4.2 Development of the model 4.2.1 First-generation model 4.2.2 Second-generation model 4.2.3 Third-generation model 4.3 Model testing 4.4 Discussion: decision-tree model 5 Error-source classification using a machine-learning approach 5.1 Machine learning for classification 5.1.1 Support-vector-machine algorithm 5.1.2 Ensemble algorithm – random forest 5.1.3 Logistic-regression algorithm 5.2 Study design 5.2.1 Case selection 5.2.2 Feature selection 5.3 Model generation 5.4 Model testing 5.5 Discussion 6 Summary/ Zusammenfassung Bibliography Appendix List of Figures List of Tables List of Abbreviations

Page generated in 0.0918 seconds