• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 3
  • 2
  • Tagged with
  • 16
  • 8
  • 7
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

New approaches to understand conductive and polar domain walls by Raman spectroscopy and low energy electron microscopy / Nouvelles approches pour comprendre les parois de domaines conductrices et les parois de domaines polaires par spectroscopie Raman et microscopie électronique de faible énergie

Nataf, Guillaume F. 05 October 2016 (has links)
Ce travail de thèse porte sur les propriétés structurales et électroniques des parois de domaines ferroïques ; il a pour objectif une meilleure compréhension des mécanismes de conduction dans les parois de domaines du niobate de lithium d’une part, et de la polarité des parois de domaine dans le titanate de calcium d’autre part. La première partie est consacrée aux interactions entre les défauts et les parois de domaine dans le niobate de lithium. L’observation d’une relaxation diélectrique de faible énergie d’activation et l’analyse de son comportement sous l’effet d’un recuit dans des échantillons avec et sans parois nous conduisent à proposer que les parois de domaines stabilisent des états polaroniques. Nous rapportons aussi l'évolution de modes Raman dans des échantillons congruents de niobate de lithium dopés de manière croissante en magnésium. Nous identifions des décalages en fréquence spécifiques aux parois de domaines. Les parois de domaines apparaissent alors comme des lieux de stabilisation des défauts polaires. Nous utilisons la microscopie électronique miroir (MEM) et la microscopie électronique de faible énergie (LEEM) pour caractériser les domaines et parois de domaines à la surface du niobate de lithium dopé magnésium. Nous démontrons que les réglages de la distance focale peuvent être utilisés pour déterminer la polarisation du domaine. Aux parois de domaines, un champ électrique latéral, provenant de différents états de charge de surface, est mis en évidence. Dans une seconde partie, nous étudions la polarité des parois de domaine dans le titanate de calcium. Nous utilisons la spectroscopie de résonance piézo-électrique pour mettre en évidence l’excitation de résonances élastiques par un signal électrique, ce qui est interprété comme une réponse piézoélectrique des parois de domaines. Une image directe des parois de domaine du titanate de calcium est obtenue par LEEM, et montre une différence de potentiel de surface entre domaines et parois. Ce contraste peut être modifié sous l’effet d’injection d’électrons, par un effet d’écrantage des charges de polarisation aux parois. / We investigate the structural and electronic properties of domain walls to achieve a better understanding of the conduction mechanisms in domain walls of lithium niobate and the polarity of domain walls in calcium titanate. In a first part, we discuss the interaction between defects and domain walls in lithium niobate. A dielectric resonance with a low activation energy is observed, which vanishes under thermal annealing in monodomain samples while it remains stable in periodically poled samples. Therefore we propose that domain walls stabilize polaronic states. We also report the evolution of Raman modes with increasing amount of magnesium in congruent lithium niobate. We identified specific frequency shifts of the modes at the domain walls. The domains walls appear then as spaces where polar defects are stabilized. In a second step, we use mirror electron microscopy (MEM) and low energy electron microscopy (LEEM) to characterize the domains and domain walls at the surface of magnesium-doped lithium niobate. We demonstrate that out of focus settings can be used to determine the domain polarization. At domain walls, a local stray, lateral electric field arising from different surface charge states is observed. In a second part, we investigate the polarity of domain walls in calcium titanate. We use resonant piezoelectric spectroscopy to detect elastic resonances induced by an electric field, which is interpreted as a piezoelectric response of the walls. A direct image of the domain walls in calcium titanate is also obtained by LEEM, showing a clear contrast in surface potential between domains and walls. This contrast is observed to change reversibly upon electron irradiation due to the screening of polarization charges at domain walls.
12

EFFECT OF GRAIN SIZE AND MECHANICAL STRESS ON POLARIZATION SWITCHING OF FERROELECTRICS

Keisuke Yazawa (9187367) 04 August 2020 (has links)
The polarization response such as ferroelectric and ferroelastic switching in ferroelectrics is the important feature for ferroelectric and electromechanical applications. In polycrystalline form ferroelectrics, effects of the microstructural parameters such as texture, grain size, and residual stress are there and have not fully been understood. Among these effects, (1) the origin of grain size effects on ferroelastic switching, (2) mechanical stress effects on polarization switching, and (3) ferroelectric switching kinetics and the relationship to grain boundaries are investigated.<br>Firstly, the microscopic origin of ferroelastic switching suppression in smaller grains is discovered using a microscopic probing technique (piezoresponse force microscopy). It is demonstrated that there is no independent grain size effect on ferroelastic switching; the grain size affects the domain structure in a grain, and the domain structure plays an important role in the ferroelastic switching suppression. This result suggests that the grain size is not an independent critical parameter for the electromechanical property degradation in a grain < 1 m as the ferroelastic switching is a dominant component for the electromechanical property.<br>The study about the mechanical stress effects on the electric field induced polarization switching rationalizes the emergence of the electric field induced low-symmetry phases observed in tetragonal Pb(Zr,Ti)O3 and BaTiO3 ceramics after poling. It is demonstrated that a shear stress plays an important role in stabilizing the monoclinic phase in Pb(Zr,Ti)O3 whereas a normal stress along the polarization axis is a key for the monoclinic phase in BaTiO3 with a thermodynamic approach. It is suggested that the fraction of the low-symmetry phase, which is important for the large electromechanical property, can be engineered by applying an appropriate stress.<br>For the work about ferroelectric switching kinetics, the first direct Barkhausen noise associated with ferroelectric switching is measured. The domain switching time is quantified by the frequency of the Barkhausen noise. It is discovered that the dominant domain wall pinning site is grain boundaries based on the domain wall jump distance between pinning sites calculated from the switching time. This result suggests that the technique is a good tool for understanding the relationship between microstructure – domain wall kinetics.<br>In sum, the mechanisms of the polarization switching suppression due to domain structure and grain boundaries, and the emergence of the low symmetry phases due to stresses are revealed. These discoveries facilitate further improvements of the device performances with engineering the domain structure, grain boundaries and residual stress.<br>
13

Understanding Ferroelastic Domain Reorientation as a Damping Mechanism in Ferroelectric Reinforced Metal Matrix Composites

Poquette, Ben David 09 October 2007 (has links)
Ferroelectric-reinforced metal matrix composites (FR-MMCs) offer the potential to improve damping characteristics of structural materials. Many structural materials are valued based on their stiffness and strength; however, stiff materials typically have limited inherent ability to dampen mechanical or acoustic vibrations. The addition of ferroelectric ceramic particles may also augment the strength of the matrix, creating a multifunctional composite. The damping behavior of two FR-MMC systems has been examined. One involved the incorporation of barium titanate (BaTiO3) particles into a Cu- 10w%Sn (bearing bronze) matrix and the other incorporating them into an electroformed Ni matrix. Here the damping properties of the resulting ferroelectric reinforced metal matrix composites (FR-MMCs) have been investigated versus frequency, temperature (above and below the Curie temperature of the reinforcement), and number of strain cycles. FR-MMCs currently represent a material system capable of exhibiting increased damping ability, as compared to the structural metal matrix alone. Dynamic mechanical analysis and neutron diffraction have shown that much of this added damping ability can be attributed to the ferroelectric/ferroelastic nature of the reinforcement. / Ph. D.
14

Crystal growth, guest ordering and ferroelastic properties of urea inclusion compounds

Rush, Jeremy Richard January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Mark D. Hollingsworth / The ferroelastic urea inclusion compound (UIC) of 2,10-undecanedione/urea exhibits a striking pseudoelastic memory effect. Although pseudoelasticity is possible for UICs containing only 2,10-undecanedione, introduction of a structurally similar guest impurity (2-undecanone) gives rise to rubber-like behavior, a form of pseudoelasticity. This phenomenon depends on both the crystal strain and the concentration of monoketone: above 13-14% 2-undecanone, pseudoelastic behavior is observed reliably, even at strains as high as 2.4%. The dramatic change in ferroelastic behavior over a small range of impurity content indicates that this is a critical threshold phenomenon. Because the impurity concentration has such a dramatic effect on domain switching, it was important to determine the sector-dependent patterns of incorporation of this relaxive impurity. Preliminary HPLC analyses of guest populations suggest that preferential incorporation of monoketone guests occurs between nonequivalent growth sectors, and that these patterns can be rationalized using a symmetry specific growth model. Birefringence mapping and HPLC studies of optically anomalous UICs containing mixtures of 2,9-decanedione and 2-decanone (which possess trigonal metric symmetry) suggest analogous patterns in guest incorporation and/or ordering that can also be rationalized. Although crystals of 2,9-decanedione/urea exhibit no ferroelastic strain at ambient temperature, they exhibit a proper ferroelastic phase transition near -170[degrees]C. It is proposed that differential perfection of domains gives rise to pseudoelasticity in UICs, and that relaxive impurities play an important role in the energetics of this process. Because ultrafast video studies of domain reversion kinetics demonstrate no clear correlation of observed rates with impurity content, it is proposed that the relaxive impurities facilitate spontaneous domain reversion by annealing stressed defect sites that would otherwise lead to irreversible or plastic domain switching. Following earlier work using synchrotron white beam X-ray topography, the driving force for domain reversion is thought to involve the presence of nanoscopic twins whose strain is epitaxially mismatched with neighboring daughter domains. The behavior of these nanoscopic twins was monitored with in-situ X-ray diffraction studies of stressed crystals, and this has led to a more thorough understanding of the role of these nanoscopic twins in the ferroelastic domain switching and rubber-like behavior in this class of materials.
15

Caractérisation des propriétés électro-acoustiques de structures piézoélectriques soumises à une contrainte statique de type électrique ou mécanique / Caracterization of electro-acoustic properties of piezoelectric structures submitted to static electrical or mechanical stress

Domenjoud, Mathieu 28 November 2012 (has links)
Utilisés dans de nombreux domaines, les matériaux piézoélectriques sont régulièrement soumis à des sollicitations externes ou internes qui modifient leurs propriétés. Dans le but de prévoir et d’anticiper ces altérations, ce travail étudie les propriétés de matériaux piézoélectriques soumis à une contrainte statique de type mécanique ou électrique. Dans un premier temps, nous développons les équations du mouvement d’un matériau piézoélectrique (non hystérétique) au second ordre, en tenant compte des déformations dynamiques, mais aussi statiques. L’étude numérique des vitesses et du coefficient de couplage est faite sur le niobate de lithium, dans différents plans de coupe et différents systèmes de coordonnées afin d’évaluer dans quelles configurations l’application d’une contrainte externe électrique ou mécanique améliore ou dégrade les propriétés du matériau. Nous caractérisons ensuite les comportements hystérétiques de piézocéramiques sous contraintes en modélisant l’évolution des polarisations et déformations rémanentes microscopiques via les mouvements de murs de domaines. La comparaison des résultats numériques avec des évolutions de 4 piézocéramiques nous permet de définir le domaine de validation de nos hypothèses et d’expliciter les comportements hystérétiques de piézocéramiques. Dans une dernière partie, nous mettons en place un dispositif expérimental de mesure de déformations et du déplacement électrique de structures piézoélectriques sous contrainte mécanique. Ces résultats nous permettent de dimensionner notre étude sur le niobate de lithium et apportent une meilleure compréhension de l’évolution des déformations transversales dans les piézocéramiques. / Used in many domains, piezoelectric materials are frequently submitted to external or internaI stresses which modify their properties. In order to prevent and anticipate these modifications, this work studies the properties of piezoelectric materials under static electrical or mechanical stress. First, the motion equations of a piezoelectric (non hysteretic) rnaterial are developed at the second order taking to account the static strain and the dynamic ones. The numerical study of plane wave velocities and coupling coefficients is performed on lithium niobate, in different cuts and different coordinate systems. Then, we evaluate in which configurations the application of an electrical or mechanical stress improves or degrades the material properties. In a second part, the hysteretic behaviours of piezocerarnic materials under electrical and mechanical stresses are characterized by modelling the evolutions of microscopic remanent polarization and strains through the movements of domain walls. Numerical results are compared to evolutions of 4 piezoceramics and allow us to define the validation domain of our hypothesis and to explain hysteretic behaviours of soft and hard piezoceramics. In the last part, an experimental device to measure strains and electrical displacements under mechanical stress is developped. Results allow study on lithium niobate to be planned and bring a better understanding of transversal strain evolutions in piezoceramics.
16

In Situ Crystallography And Charge Density Analysis Of Phase Transitions In Complex Inorganic Sulfates

Swain, Diptikanta 06 1900 (has links) (PDF)
The thesis entitled “In situ crystallography and charge density analysis of phase transitions in complex inorganic sulfates” consists of six chapters. Structural changes exhibited by ferroic and conducting materials are studied as a function of temperature via in situ crystallography on the same single crystal. These unique experiments bring out the changes in the crystal system resulting in subtle changes in the complex polyhedra, distortions in bond lengths and bond angles, rotation of sulfate tetrahedral around metal atoms, phase separations and charge density features. The results provide new insights into the structural changes during the phase transition in terms of coordination changes, variable bond paths and variability in electrostatic potentials while suggesting possible reaction pathways hitherto unexplored. Chapter 1 gives a brief review of the basic features of structural phase transitions in terms of types of phase transitions, their mechanisms and related properties and outlines some of the key characterization techniques employed in structural phase transition studies like single crystal diffraction, thermal analysis, conductivity, dielectric relaxation, Raman spectroscopy and charge density studies. Chapter 2 deals with the group of compounds A3H(SO4)2, where A= Rb, NH4, K, Na which undergoes ferroelastic to paraelastic phase transitions with increase in temperature. Crystal structures of these compounds have been determined to a high degree of accuracy employing the same single crystal at room temperature at 100K and at higher temperatures. The data collection at 100K allows the examination of the ordered and disordered hydrogen atom positions. Rb3H(SO4)2 show two intermediate phases before reaching the paraelastic phase with increase in temperature. However, in case of (NH4)3H(SO4)2 and K3H(SO4)2, the paraelastic phase transition involves a single step. Chapter 3 deals with variable temperature in situ single crystal X-ray diffraction studies on fast super protonic conductors AHSO4, where A= Rb, NH4, K to characterize the structural phase transitions as well as the dehydration mechanism. The structure of KHSO4 at room temperature belongs to an orthorhombic crystal system with the space group symmetry Pbca and on heating to 463K it transforms to a C centered orthorhombic lattice, space group Cmca. The high temperature structure contain two crystallographically independent units of KHSO4 of which one KHSO4 unit is disordered at oxygen and hydrogen sites an shows a remarkable increase of sulfur oxygen bond distance – 1.753(4)Å. On heating to 475K, two units of disordered KHSO4 combine and loose one molecule of water to result in a structure K2S2O7 along with an ordered KHSO4 in a monoclinic system [space group P21/c]. On further heating to 485K two units of ordered KHSO4 combine, again to lose one water molecule to give K2S2O7 in a monoclinic crystal system [space group C2/c]. In the case of RbHSO4, both the high temperature structural phase transition and a serendipitous polymorph have been characterized by single crystal X-ray diffraction. The room temperature structure is monoclinic, P21/n, and on heating the crystal insitu On the diffractometer to 460K the structure changes to an orthorhombic system [space group Pmmn]. On keeping the crystallization temperature at 80°C polymorph crystals of RbHSO4 were grown. In case of NH4HSO4 both the room temperature and high temperature structures are structurally similar to those in RbHSO4, but the transition temperature is found to be 413K. Chapter 4 deals with the crystal structure, ionic conduction, dielectric relaxation, Raman spectroscopy phase transition pf a fast ion conductor Na2Cd(SO4)2. The structure is monoclinic, space group C2/c, and is built up with inter connecting CdO6 octahedra and SO4 tetrahedra resulting in a framework structure. The mobile Na atoms are present in the framework, resulting in a high ionic conductivity. The conductivity measurement shows two phase transitions one at around 280°C, which was confirmed later from DTA, dielectric relaxation, high temperature powder diffraction and Raman spectroscopy. Chapter 5 describes the structure and in situ phase separation in two different bimetallic sulfates Na2Mn1.167(SO4)2S0.33O1.1672H2O and K4Cd3(SO4)5.3H2O. These compounds were synthesized keeping them as mimics of mineral structures. The structure of Na2Mn1.167(SO4)2S0.33O1.1672H2O is trigonal, space group R . The stiochiometry can be viewed as a combination of Na2Mn(SO4)22H2O resembling the mineral Krohnkite with an additional (Mn0.167S0.333O1.167) motif. On heating the parent compound on the diffractometer to 500K and keeping the capillary at this temperature for one hour, a remarkable structural phase separation occurs with one phase showing a single crystal-single crystal transition and the other generating a polycrystalline phase. The resulting single crystal spots can be indexed in a monoclinic C2/c space group and the structure determination unequivocally suggests the formation of Na2Mn(SO4)2, isostructural to Na2Cd(SO4)z. The mechanism follows the symmetry directed pathway from the rhombohedral → monoclinic symmetry with the removal of symmetry subsequent to the loss of the two coordinated water molecules. In case of K4Cd3(SO4)5.3H2O the structure belongs to the space group P21/n at room temperature and on heating to 500K and holding the capillary at this temperature for 60 minutes as before, the CCD images can be indexed in a cubic P213 space group after the phase separation, generating K2Cd2(SO4)3, belonging to the well known Langbeinite family, while the other phase is expected to be the sought after K2Cd(SO4)2. The possible pathways have been discussed. Chapter 6 reports the charge density studies of phase transitions in a type II langbeinite, Rb2Mn2(SO4)3. The structure displays two different phases, cubic at 200K, orthorhombic at 100K respectively. After multiple refinements it is found that there are significant differences in the actual bond path (Rij) and the conventional bond length. In the cubic phase the distortions in sulfate tetrahedral are more than in the orthorhombic phase which could be the expected driving force for the phase transition to occur. Appendix contains reprints of the work done on the structures of the following: a) Rb2Cd3(SO4)3(OH)2.2H2O: structural stability at 500 K b) Structure of (NH4)2Cd3(SO4)4.5H2O c) Structure of Rb2Cd3(SO4)4.5H2O

Page generated in 0.0772 seconds