• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Current-induced torque driven ferromagnetic resonance in magnetic microstructures

Fang, Dong January 2011 (has links)
This Dissertation explores the interaction between the magnetisation and an alternating current in a uniform ferromagnetic system. Diluted magnetic semiconductors (Ga,Mn)As and (Ga,Mn)(As,P) have been studied. Due to their strong spin-orbit coupling and well-understood band-structure, these materials are well-suited to this investigation. The combined effect of spinorbit coupling and exchange interaction permits the alternating current to induce an oscillating current-induced torque (CIT) on the magnetisation. In the frequency range close to the natural resonance frequency of the magnetic moments (gigahertz), CIT can excite precessional motion of the magnetisation, a process known as ferromagnetic resonance (FMR). CIT can be parameterised by an effective magnetic field. By analysing the lineshape of the measured FMR signals, the magnitude and orientation of this effective field have been accurately determined. Moreover, the current-induced fields in these ferromagnetic materials have been observed with symmetries of the Dresselhaus, and for the first time, Rashba spin-orbit coupling. A new class of device-scale FMR technique, named as CIT-FMR, has been established in this Dissertation, with the advantage of simple device structure (only a resistor is required) and scalability (measurements have been performed on devices sized from 4 μm down to 80 nm). This technique is not only limited to magnetic semiconductors, but can also be transferred to study other ferromagnetic systems such as ultrathin metal films. Finally, the CIT-FMR technique is employed to study the magnetic anisotropyin individual (Ga,Mn)As and (Ga,Mn)(As,P) micro-devices. Devices down to 80 nm in width have been measured in (Ga,Mn)(As,P), which show strong strain-relaxation-induced anisotropy, larger than any previously reported cases on (Ga,Mn)As. Furthermore, due to the tensile-strain on the (Ga,Mn)(As,P) epilayers, the anisotropy field due to patterning-induced strain-relaxation in these devices is observed to take the opposite direction compared to that in the compressively-strained (Ga,Mn)As samples.
2

A Two-dimensional Semiconducting GaN-based Ferromagnetic Monolayer

Ma, Yingqiao January 2018 (has links)
No description available.
3

Croissance épitaxiale et propriétés magnétiques d'hétérostructures de Mn5Ge3 sur Ge pour des applications en électronique de spin / Epitaxial growth and magnetic properties of Mn5Ge3/Ge heterostructures for spintronic applications.

Spiesser, Aurélie 06 January 2011 (has links)
L’intégration de matériaux ferromagnétiques dans des hétérostructures semi-conductrices offre aujourd'hui de nouvelles perspectives dans le domaine de l’électronique de spin. Dans ce manuscrit sont présentés les résultats de la croissance par épitaxie par jets moléculaires d’hétérostructures de Mn5Ge3 sur Ge(111). Le Mn5Ge3 est un composé ferromagnétique jusqu'à température ambiante qui a l’avantage de pouvoir s’intégrer directement au Ge, semiconducteur du groupe IV. S'agissant d'un matériau relativement nouveau, un des efforts majeurs a porté sur la maîtrise de la croissance des couches minces de Mn5Ge3 par la technique d'épitaxie en phase solide (SPE). Un fort accent a été mis sur les caractérisations structurales, la détermination des relations d'épitaxie avec le Ge(111), afin de les relier aux propriétés magnétiques des films. La seconde partie de ce travail a été consacrée à l'étude des processus cinétiques d'incorporation de carbone dans les couches minces de Mn5Ge3. La combinaison des différents moyens de caractérisations structurales et magnétiques a permis d'aboutir à une augmentation notable de la température de Curie tout en conservant une excellente qualité structurale de la couche et de l'interface avec le Ge et une stabilité thermique jusqu’à 850°C. Tous ces résultats indiquent que les couches minces de Mn5Ge3épitaxiées sur Ge(111) apparaissent comme des candidats à fort potentiel pour l'injection de spin dans les semi-conducteurs du groupe IV / Spin-electronics based on ferromagnetic metal/semiconductor systems offer a pathway toward integration of information storage and processing in a single material. This emerging fieldaims to create a new generation of electronic devices where two degrees of freedom will be associated: spin and charge of carriers. In this context, the outcome of this thesis is toelaborate a novel ferromagnetic compound, namely Mn5Ge3, on Ge using molecular beamepitaxy method. The interests in this compound are manyfold: it can be stabilized as a uniquephase on Ge(111) in the form of epitaxial thin films, it is ferromagnetic until room temperature and it is compatible with Si-based conventional microelectronics. In this work,one major effort was devoted to the epitaxial growth of Mn5Ge3 on Ge using Solid PhaseEpitaxy method. By combining structural and magnetic characterizations, we demonstrated high quality epitaxial thin Mn5Ge3 films with good magnetic properties. We also studied theeffect carbon incorporation on the structural and magnetic properties of epitaxial Mn5Ge3films. The carbon-doped films exhibit a high Curie temperature with an atomically smoothinterface and a high thermal stability. All these results show that Mn5Ge3 is a promisingcandidate opening up the ways for spin injection via tunnel effect through the Schottky barrierinto Ge
4

Exploring the Photoresponse and Optical Selection Rules in the Semiconductor Nanowires, Topological Quantum Materials and Ferromagnetic Semiconductor Nanoflakes using Polarized Photocurrent Spectroscopy

Pournia, Seyyedesadaf 04 October 2021 (has links)
No description available.
5

Theory of the Anomalous Hall Effect in the Insulating Regime

Liu, Xiongjun 2011 August 1900 (has links)
The Hall resistivity in ferromagnetic materials has an anomalous contribution proportional to the magnetization, which is defined as the anomalous Hall effect (AHE). Being a central topic in the study of ferromagnetic materials for many decades, the AHE was revived in recent years by generating many new understandings and phenomena, e.g. spin-Hall effect, topological insulators. The phase diagram of the AHE was shown recently to exhibit three distinct regions: a skew scattering region in the high conductivity regime, a scattering-independent normal metal regime, and an insulating regime. While the origin of the metallic regime scaling has been understood for many decades through the expected dependence of each contribution, the origin of the surprising scaling in the insulating regime was completely unexplained, leaving the primary challenge to the last step to understand fully the AHE. In this dissertation work we developed a theory to study the AHE in the disordered insulating regime, whose scaling relation is observed to be omega_xy^AH is proportional to omega_xx^(1.40∼1.75) in a large range of materials. This scaling is qualitatively different from the ones observed in metals. In the metallic regime where kFl > > 1, the linear response theory predicts that omega_xx is proportional to the quasi-particle lifetime tau, while omega_xy^AH scales as alpha*tau beta*tau^0, indicating that the upper limit of the scaling exponent is 1.0. Basing our theory on the phonon-assisted hopping mechanism and percolation theory, we derived a general formula for the anomalous Hall conductivity (AHC), and showed that the AHC scales with the longitudinal conductivity as omega_xy^AH ~ omega_xx^gamma with gamma predicted to be 1.33 <= gamma <= 1.76, quantitatively in agreement with the experimental observations. This scaling remains similar regardless of whether the hopping process is long range type (varible range hopping) or short range type (activation E3 hopping), or is influenced by interactions, i.e. Efros-Shklovskii (E-S) regime. Our theory completes the understanding of the AHE phase diagram in the insulating regime.
6

Magnetické anizotropie v (Ga,Mn)As a v kovových multivrstvách se silnou spin-orbitální interakcí / Magnetic anisotropies in (Ga,Mn)As and metallic multilayers with strong spin-orbit coupling

Zemen, Jan January 2010 (has links)
The thesis presents a numerical study of magnetocrystalline anisotropies in dilute ferromagnetic semiconductors and transition metal systems intended to advance the current understanding of the microscopic origins of this relativistic effect and to contribute to the development of spintronic devices with new functionalities. The major part of the work surveys magnetocrystalline anisotropies in (Ga,Mn)As epilayers and compares the calculations to available experimental data. Our model is based on an envelope function description of the valence band holes and a spin representation for their kinetic-exchange interaction with localised electrons on Mn2+ ions, treated in the mean-field approximation. For epilayers with growth induced lattice-matching strains we study in-plane to out-of-plane easy axis reorientations as a function of Mn local-moment concentration, hole concentration, and temperature. Next we focus on the competition of in-plane cubic and uniaxial anisotropies. We add an in-plane shear strain to the effective Hamiltonian in order to capture measured data in bare, unpatterned epilayers, and we provide microscopic justification for this approach. The model is then extended by an in-plane uniaxial strain and used to directly describe experiments with magnetisation direction controlled by...

Page generated in 0.0729 seconds