• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Phosphorus Rate Effects With and Without AVAIL® on Dryland Winter Wheat in an Eroded Calcareous Soil

Hodges, Ryan C. 01 May 2019 (has links)
Soluble phosphorus fertilizer is bound in the soil rapidly after application in soils high in calcium. A fertilizer additive known as AVAIL® (J.R. Simplot Company) is purported to keep applied phosphorus fertilizer more available to plants by binding to soil minerals such as calcium, magnesium, and iron, thereby reducing phosphorus binding. This could prove useful due to the attraction of AVAIL® with cations such as Ca2+, but is fairly unstudied for dryland wheat production on alkaline, calcium-rich soils. The objective of this study is to evaluate the effect of low-rate fertilizer treatments with AVAIL® on dryland small grain yield on calcium-rich, eroded hillslopes in a fallow-wheat crop rotation. Two experiments were conducted to determine treatment effects on yield and grain quality for (1) above-ground dispersed (broadcast) application of monoammonium phosphate (MAP; 52% P2O5 content) fertilizer in the spring (2017), and (2) fall application of MAP incorporated with the seed (banded) at planting (2018). Fertilizer treatments were the recommended rate (60 lbs/ac) or one-half the recommended rate (30 lbs/ac) for dryland small grain, with or without AVAIL® (four treatments), replicated four times in a strip-block design for the 2017 experiment and replicated 3 times in a randomized complete block design for the 2018 experiment. Experimental blocks were assigned to hillslope erosional severity groups. The erosional severity groups were v designated (non-eroded, slightly eroded, highly eroded, and depositional slope segments). Hillslope segmentation allowed for correlations between calcium carbonate, organic matter, and yield levels across treatments. Results from the broadcast study indicate that there was no yield advantage of any treatment at any level of erosional severity, saving a grower $20.30/acre by applying 30 lbs/acre of MAP. However, 30 lbs/acre of MAP with AVAIL® showed similar yield to 60 lbs/acre of MAP without AVAIL®, potentially saving a grower $6.42/acre over standard growing practices. The incorporated study also indicated that there was no reliable yield advantage of any fertilizer treatment at any level of erosional severity, saving a grower $15.37/acre by applying 30 lbs/acre of MAP. Neither treatment with AVAIL had greater yield or profit than those without AVAIL. Profit for the 60 lbs/acre of MAP treatment narrowly outperformed 30 lbs/acre of MAP by $1.73/acre, indicating that growers may be able to reduce phosphorus use under dryland growing conditions with optimal fertilizer placement.
2

Impact of switching from fall to spring fertilizer application : "an economic analysis of N<sup>2</sup>O reducing seeding systems in Saskatchewan"

Marleau, Richard Philip 21 July 2003 (has links)
Nitrogen (N) fertilizer applied in the fall has been shown to increase emissions of N2O a GHG (Nyborg et al. 1997). Applying N fertilizer in the spring is a management technique Saskatchewan grain and oilseed producers can use to reduce N2O emissions. The hypothesis of this thesis is that fall application of N fertilizer is more profitable than spring application. Factors to consider in the timing of fertilizer application include, the level of information available, input cost, input efficiency, and application cost. The key objective of this thesis is to determine the financial impact of switching to spring N application from fall N application. Stochastic variables include fall subsoil moisture, winter precipitation, growing season precipitation, input costs, and output prices. Expected utility theory for two representative farms at two locations is used to determine optimal N fertilizer rates and the value of spring subsoil moisture information and the value of spring output price forecasts. The fixed and variable operating costs are calculated for three seeding systems. The results show that it is optimum for producers to purchase N fertilizer in the fall and apply N fertilizer in the spring. Spring subsoil moisture information, and spring output price forecasts have little value to producers committed to continuous cropping. One pass (seed and fertilize in the spring) seeding systems have lower variable and fixed costs than two pass seeding systems for producers applying large amounts of fertilizer.
3

Impact of switching from fall to spring fertilizer application : "an economic analysis of N<sup>2</sup>O reducing seeding systems in Saskatchewan"

Marleau, Richard Philip 21 July 2003
Nitrogen (N) fertilizer applied in the fall has been shown to increase emissions of N2O a GHG (Nyborg et al. 1997). Applying N fertilizer in the spring is a management technique Saskatchewan grain and oilseed producers can use to reduce N2O emissions. The hypothesis of this thesis is that fall application of N fertilizer is more profitable than spring application. Factors to consider in the timing of fertilizer application include, the level of information available, input cost, input efficiency, and application cost. The key objective of this thesis is to determine the financial impact of switching to spring N application from fall N application. Stochastic variables include fall subsoil moisture, winter precipitation, growing season precipitation, input costs, and output prices. Expected utility theory for two representative farms at two locations is used to determine optimal N fertilizer rates and the value of spring subsoil moisture information and the value of spring output price forecasts. The fixed and variable operating costs are calculated for three seeding systems. The results show that it is optimum for producers to purchase N fertilizer in the fall and apply N fertilizer in the spring. Spring subsoil moisture information, and spring output price forecasts have little value to producers committed to continuous cropping. One pass (seed and fertilize in the spring) seeding systems have lower variable and fixed costs than two pass seeding systems for producers applying large amounts of fertilizer.
4

Influence of soil texture, water management and fertilizer N on the biomass production and antimicrobial properties of Mentha longifolia L.

Koetlisi, Andreas 03 1900 (has links)
Thesis (MScAgric)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: Soil texture, plant available water and fertilizer N would influence growth, biomass production and antimicrobial properties of locally used medicinal plants.This research was aimed at investigating how various soil textures (loamy sand, sandy loam and loam) with varying amounts of plant available water (PAW) and nitrogen fertilizer rates would influence the biomass production and antimicrobial properties of Mentha longifolia L. In this research, a two-way factorial experiment was used. It was produced by 3 X 3 factors, viz. three different soil textures (loam, sandy loam and loamy sand) and three levels of PAW in the first trial (0 %, 50 % and 90 % depletion of PAW) and three levels of N fertilizer rates in the second trial. The elemental fertilizers KNO3, K2SO4, KH2PO4, KCl Ca (NO3)2.2H2Oz, CaSO4.2H2O and Mg SO4.7H2O were used to prepare a nutrient solution for fertigation to meet 0Kg ha-1, 150Kg ha-1 and 250Kg ha-1 fertilizer N. This was replicated four times. The experiment was conducted in a tunnel. From the first trial the highest biomass production was obtained from 0% depletion of PAW treatments whereas 50% and 90% depletion of PAW matched each other at lower biomass productions. In terms of soil texture a higher biomass production was gained from loamy sand followed by loam and sandy loam. In the second trial similar influences of soil texture were evident and the significant biomass productions were highest, intermediate and low from 250Kg ha-1, 150Kg ha-1 and 0Kg ha-1 of fertilizer N, respectively. Accordingly, Mentha longifolia L revealed a minimal bacterial inhibition activity at 20g 100ml-1 against Staphylococcus aureus (gram positive bacteria) under Minimum Inhibitory Concentration assay–susceptibility test. It was therefore concluded that soil texture does influence biomass production. In a like manner, the PAW had a significant impact on the total biomass production. An increase in N fertilizer increased vegetative biomass production. Plant material obtained from Mentha longifolia L has antimicrobial properties. Medically the plant can be used to combat Staphylococcus aureus – a major and ubiquitous pathogen for humans. The significance of this study is thus that it will benefit and help the medical community and future research as the guide to sustainable production and utilization of Mentha longifolia L. / AFRIKAANSE OPSOMMING: Grondtekstuur, plant beskikbare water en kunsmis N sal plantegroei, biomassaproduksie en antimikrobiese-eienskappe van plaaslike medisinale plante affekteer. Die doel van die navorsing was om die effek van grondteksture, plant beskikbare water (PAW) en stikstof op die biomassaproduksie en antimikrobieseeienskappe van Mentha longifolia L. te bestudeer. 'n Tweerigting-faktoriaal-eksperiment is gebruik deur drie verskillende grondteksture (leem, sanderige-leemgrond en leemsand) en drie vlakke van PAW in die eerste geval (0%, 50% en 90% uitputting van PAW) en drie vlakke van N-kunsmistoedienings in die tweede geval. Die basiese kunsmis KNO3, K2SO4, KH2PO4, KClCa(NO3)2.2H2Oz, CaSO4.2H2O en MgSO4.7H2O is gebruik in so „n mate dat 0Kg ha-1, 150kg ha-1 en 250 kg ha-1 Nas sproeibemesting toegedien is. Dit is vier keer herhaal. Die eksperiment is uitgevoer in 'n tonnel. Die hoogstebiomassaproduksie is van die eerste geval verkry van 0% uitputting van PAW behandelings, terwyl 50% en 90% uitputting van PAW ooreenstem met mekaar op laer biomassaproduksies. In terme van grondtekstuur is 'n hoër biomassaproduksie verkry in leemsand gevolg deur leem en sanderigeleem. In die tweede geval is soortgelyke invloede van grondtekstuur duidelik en die beduidende biomassaproduksies was die hoogste, intermediêre en laagste van 250 kg ha-1, 150kg ha-1 en 0Kg ha-1 van kunsmis N, onderskeidelik. Gevolglik, Mentha longifolia L onthul 'n minimale bakteriese inhibisie aktiwiteit op 20g 100ml-1 teen Staphylococcus aureus (gram positiewebakterieë) onder Minimum inhiberende konsentrasie assay-vatbaarheidtoets. Die gevolgtrekking is dus dat grondtekstuu biomassaproduksie beïnvloed. In 'n soortgelykewyse, het PAW 'n beduidende impak op die totale biomassaproduksie. 'n Toename in N-kunsmis verhoog vegetatiewe biomassaproduksie. Plantmateriaalverkry van Mentha longifolia L het antimikrobiale-eienskappe en kan as Die medisinale plante gebruik word om Staphylococcus aureus te bestry - 'n groot en alomteenwoordige patogeen in die mens. Die belangrikste bydrae van die navorsing is die bydra wat dit tot die mediesegemeenskap gemaak het. Die studie het ook riglyne gestel vir toekomstige navorsing vir volhoubare produksie van Mentha longifolia L. / NRF and DST for the funding of this study through the Seboka Project

Page generated in 0.0567 seconds