• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Role of Prostaglandin H Synthase (PHS) Bioactivation and Nuclear Factor Erythroid 2-related Factor 2 (Nrf2)-Mediated Protection in Endogenous and Methamphetamine-initiated Neurotoxicity

Ramkissoon, Annmarie 24 July 2013 (has links)
Endogenous brain compounds and xenobiotics, including the neurotoxins such as the amphetamine analogs 3,4-methylenedioxymethamphetamine (MDMA,Ecstasy), methamphetamine (METH, Speed) and methylenedioxyamphetamine (MDA, active metabolite of MDMA), may be bioactivated by prostaglandin H synthase (PHS) to free radicals that generate reactive oxygen species (ROS). In the absence of adequate antioxidant or repair mechanisms, ROS oxidize macromolecules such as DNA, protein and lipids, which can lead to toxicity. In vitro, we evaluated bioactivation using both purified ovine PHS-1 and cultured cells stably overexpressing either human PHS-1 or hPHS-2 isozymes. We found the neurotransmitter dopamine, its precursors and some metabolites, as well as METH and MDA, can be bioactivated by ovine and/or human PHS in an isozyme-dependent fashion that generates ROS, which oxidize DNA and protein and increase toxicity. This process is blocked by both the PHS inhibitor acetylsalicylic acid (ASA) and the ROS detoxifying enzyme catalase. Our data are the first to reveal isozyme-dependent bioactivation by PHS as a potential mechanism for enhanced susceptibility to both exogenous and endogenous neurotoxins, the latter of which may be particularly important in aging. METH-initiated ROS can also activate redox-sensitive transcription factors such as nuclear factor erythroid 2-related factor 2 (Nrf2), which is involved in the induction of an array of protective mechanisms in both adult and fetal brain. Using Nrf2 knockout mice, we showed Nrf2 has a novel neuroprotective role in METH-initiated oxidative stress, neurotoxicity and functional deficits in both fetal development and adulthood, especially with multiple exposures allowing time for the induction of neuroprotective mechanisms. Our studies are the first to show that Nrf2 afforded protection against both motor coordination deficits and olfactory deficits caused by METH in utero and in adults, suggesting that deficiencies in Nrf2 activation constitute a risk factor for ROS-mediated neurotoxicity in the fetus and adult.
2

The Role of Prostaglandin H Synthase (PHS) Bioactivation and Nuclear Factor Erythroid 2-related Factor 2 (Nrf2)-Mediated Protection in Endogenous and Methamphetamine-initiated Neurotoxicity

Ramkissoon, Annmarie 24 July 2013 (has links)
Endogenous brain compounds and xenobiotics, including the neurotoxins such as the amphetamine analogs 3,4-methylenedioxymethamphetamine (MDMA,Ecstasy), methamphetamine (METH, Speed) and methylenedioxyamphetamine (MDA, active metabolite of MDMA), may be bioactivated by prostaglandin H synthase (PHS) to free radicals that generate reactive oxygen species (ROS). In the absence of adequate antioxidant or repair mechanisms, ROS oxidize macromolecules such as DNA, protein and lipids, which can lead to toxicity. In vitro, we evaluated bioactivation using both purified ovine PHS-1 and cultured cells stably overexpressing either human PHS-1 or hPHS-2 isozymes. We found the neurotransmitter dopamine, its precursors and some metabolites, as well as METH and MDA, can be bioactivated by ovine and/or human PHS in an isozyme-dependent fashion that generates ROS, which oxidize DNA and protein and increase toxicity. This process is blocked by both the PHS inhibitor acetylsalicylic acid (ASA) and the ROS detoxifying enzyme catalase. Our data are the first to reveal isozyme-dependent bioactivation by PHS as a potential mechanism for enhanced susceptibility to both exogenous and endogenous neurotoxins, the latter of which may be particularly important in aging. METH-initiated ROS can also activate redox-sensitive transcription factors such as nuclear factor erythroid 2-related factor 2 (Nrf2), which is involved in the induction of an array of protective mechanisms in both adult and fetal brain. Using Nrf2 knockout mice, we showed Nrf2 has a novel neuroprotective role in METH-initiated oxidative stress, neurotoxicity and functional deficits in both fetal development and adulthood, especially with multiple exposures allowing time for the induction of neuroprotective mechanisms. Our studies are the first to show that Nrf2 afforded protection against both motor coordination deficits and olfactory deficits caused by METH in utero and in adults, suggesting that deficiencies in Nrf2 activation constitute a risk factor for ROS-mediated neurotoxicity in the fetus and adult.

Page generated in 0.0647 seconds