Spelling suggestions: "subject:"fgf10"" "subject:"fgf19""
1 |
Dérégulation de l’axe endocrine FGF15/FGF4 lors d’infection du système entérohépatiqueRomain, Guillaume January 2014 (has links)
Fibroblast Growth Factor 19 (FGF19 chez l’humain ; FGF15 chez la souris) est un
régulateur central du métabolisme hépatique. Cette molécule a un impact important au
niveau de la différentiation neurologique et de l’oreille interne au stade foetal. À l’âge
adulte, le patron d’expression est restreint au système gastro-intestinal. Contrairement aux
autres membres de la superfamille des FGFs, FGF19/15 agit de manière endocrine car il
n’est pas retenu par la matrice extracellulaire et peut rejoindre la circulation sanguine.
L’expression de FGF19/15 est induite par les acides biliaires au niveau de l’intestin grêle,
plus précisément l’iléon. Les acides biliaires lient le récepteur nucléaire Farnesoid-XReceptor
(FXR) qui peut ensuite s’hétérodimériser avec Retinoid-X-Receptor (RXR) pour
se lier au promoteur de FGF19/15, ce qui enclenche son expression. Une fois dans le sang,
l’hormone rejoint le foie et son action est médiée par le complexe de récepteur Fibroblast
Growth Factor Receptor 4 (FGFR4) et β-Klotho (BKL). Une fois les récepteurs activés,
FGF19/15 module la glycémie en inhibant la néoglucogenèse hépatique et en activant la
synthèse du glycogène, le flux protéique en activant eIF4B et la lipémie en inhibant les
enzymes clefs de la lipogénèse. FGF19/15 joue aussi un rôle majeur au niveau du
métabolisme biliaire. Ce dernier permet de réduire la production d’acide biliaire en
inhibant la Cholesterol 7-α oxygenase (CYP7A1).
Les travaux présentés dans ce mémoire portent dans un premier temps sur la
caractérisation des conséquences amenées par l’infection sur l’axe endocrine
FGF15/FGFR4. Un premier manuscrit traite de l’expression des différents gênes clefs du
système et de leur perte lors d’une infection à Salmonella typhimurium, l’agent pathogène
causant la fièvre typhoïde chez la souris, et des conséquences sur l’homéostasie biliaire. Il
est possible de remarquer une perte de l’expression de FGF15 au niveau de l’intestin et de
FGFR4 et β-Klotho au niveau du foie, en plus de plusieurs transporteurs responsables
d’amener différents composants clefs de la bile à la vésicule biliaire ou à la circulation
sanguine. Le deuxième volet du travail consistait à déterminer le mécanisme derrière la
perte du complexe de récepteurs FGFR4/β-Klotho. Les résultats préliminaires démontrent
que la perte de β-Klotho semble être médiée seulement par le processus inflammatoire
normal et la perte de FGFR4 semble être Salmonella dépendante, par le biais de la voie c-
Jun N-terminal kinases (JNK) et le facteur de transcription Hepatic Nuclear Factor 1
alpha (HNF1α)
|
2 |
Mast Cells Regulate Bile Acid Signaling and Cholestasis via Alteration of Farnesoid X Receptor/Fibroblast Growth Factor 15 Axis in MiceMeadows, Victoria E. 03 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Primary Sclerosing Cholangitis (PSC) is a rare and slow progressing cholangiopathy characterized by hepatic inflammation, fibrosis and ductular reaction with liver transplantation as the sole therapeutic option. PSC patients are at high risk of auto-immune comorbidities like irritable bowel disease (IBD), found in up to 80% of PSC patients (PSC-IBD). There are indications of genetic and environmental components for auto-immune development in IBD; however, its etiology remains unclear. Mast cells (MCs) infiltrate the liver and can become activated leading to degranulation and release of mediators, like histamine (HA), which result in increased intrahepatic bile duct mass, biliary senescence, hepatic inflammation, and hepatic stellate cell activation. Similarly, MCs infiltrate the intestine and increase inflammation which alters host-microbiome communication. MCs are necessary for successful liver regeneration and the combat of intestinal pathogens; however, chronic HA signaling exacerbates damage in cholangiopathies and IBD. Bile acid synthesis is tightly regulated by Farnesoid X Receptor (FXR) and its downstream mediator, fibroblast growth factor 15 (FGF15, -19 in humans). Cholangiocytes (i) are the target of cholangiopathies, (ii) modify and recycle bile acids through Apical Sodium Bile Acid Transporter (ASBT)-mediated cholehepatic shunting, which functions outside of enterohepatic circulation of bile acids and (iii) are capable of autocrine HA signaling. The complex relationship between hepatic and intestinal MC infiltration and bile acid signaling has not been established; therefore, identifying MC regulation of bile acid pool and FXR/FGF15 signaling pathway will provide insight into therapeutic treatment of PSC-IBD. Under the rationale that (i) cholestatic liver diseases are positively correlated with auto-immune comorbidities like IBD, (ii) during disease, MCs infiltrate the liver and intestine and release signaling factors like HA, and (iii) MCs express FXR and secrete FGF15/19; we propose the central hypothesis that MC activation regulates bile acid signaling and PSC progression through paracrine crosstalk with cholangiocytes in the liver and intestinal inflammation.
|
3 |
ROLES OF ABCG5 ABCG8 CHOLESTEROL TRANSPORTER IN LIPID HOMEOSTASISWang, Yuhuan 01 January 2015 (has links)
The ABCG5 ABCG8 (G5G8) sterol transporter promotes cholesterol secretion into bile and opposes dietary sterol absorption in the small intestine. An emerging body of literature suggests that G5G8 links sterol flux to various risk factors for metabolic syndrome (MetS) and nonalcoholic fatty liver disease (NAFLD). Therapeutic approaches that accelerate G5G8 activity may augment reverse cholesterol transport (RCT) and provide beneficial effects in the prevention and treatment of cardiovascular and liver disease.
Mice lacking leptin (ob/ob) or its receptor (db/db) are obese, insulin resistant in part due to the reduced levels of hepatic G5G8 and biliary cholesterol. The underlying mechanisms responsible for the reduced G5G8 protein expression in these mice may provide a clue to the drug development for this target. My studies show that neither acute leptin replacement nor liver-specific deletion of leptin receptor alters G5G8 abundance or biliary cholesterol. Similarly, hepatic vagotomy has no effect on G5G8 expression. Conversely, expression of the ER chaperone, GRP78, rescues G5G8 in db/db mice.
Previous studies suggest an interdependent relationship between liver and intestine for cholesterol elimination. A combination therapy that increases G5G8-mediated biliary cholesterol secretion and simultaneously reduces intestinal absorption is likely to act additively in cholesterol elimination. My studies show that treatment with ursodiol (Urso) increases hepatic G5G8 protein and both biliary and fecal sterols in a dose-dependent manner. Ezetimibe (EZ), a potent inhibitor of intestinal cholesterol absorption, produces an additive and dose-dependent increase in fecal sterol excretion in the presence of Urso. However, the stimulatory effects of both Urso and Urso-EZ are not G5G8-dependent.
Beyond increasing G5G8 protein expression and biliary cholesterol secretion, my studies also show that Urso stimulates ileal FGF15 expression in mice. Our data of the stimulated ileal FGF15 expression in LIRKO and reduced hepatic G5G8 protein levels in Atsb KO mice both indicate the previous unrecognized role of FGF15/19 in the regulation of G5G8 and its activity. Indeed, this is subsequently confirmed by our results from the direct test of recombinant human FGF19 on G5G8. Thus, FGF15/19 may provide an alternative strategy in drug development to target G5G8 activity and accelerate cholesterol elimination.
|
Page generated in 0.0367 seconds