1 |
Fiber Bragg Grating Sensors : An Exploration Of Applications In Diverse FieldsGuru Prasad, A S 12 1900 (has links) (PDF)
Sensors have become essential elements in human life for safe and comfortable existence in the ever demanding world. Various technologies over decades have contributed in their own way fulfilling innumerable sensing requirements. The discovery of optical sensor technologies has revolutionized the sensing field due to their inherent advantages. Among the large number of fiber optic sensor technologies, FBG based sensors have become widely known and popular within and outside the photonics community and has seen a prominent rise in their utilization.
This thesis explores the use of FBG sensors for a wide range of applications scanning across a variety of engineering and medical applications, in the areas of civil engineering, biomechanical engineering, aerospace engineering, geoengineering, etc. It also deals with newer methods of packaging FBG sensors for the measurement of specific engineering parameters like strain, temperature, pressure, displacement and vibration.
In the field of civil engineering, FBG sensors are employed for strain sensing on a prism and furthermore tested on a full size brick wallet. During this study, emphasis is made on substituting traditional sensors by specially packaged FBG sensors with the intent of either enhancing the sensing system’s performance or in merging/uniting the inherent advantages of FBG sensors.
In the area of biomechanics, a novel sensor methodology using FBG sensors, for measuring surface strains generated on the skin of the calf muscle during various leg exercises is proposed. This methodology is used to address one of the most critical and life threatening issues in long distance air travel, namely the Deep Vein Thrombosis. Further, a FBG sensor based plantar sensing plate, is designed and developed, to measure plantar strain distribution in foot and also to analyze the postural stability.
In the field of aerospace engineering, FBG sensors are used for addressing two of the most vital issues; Structural Health Monitoring (SHM) and direct measurement of pressure and temperature on the surface of an aircraft under hypersonic wind flow. Carbon Fiber Composite coupon level testing is carried out to obtain a generic strain calibration factor for the FBG sensor. Further, FBG sensors are exploited for the direct measurement of absolute temperature and pressure on the leeward surface of blunt cone at hypersonic wind speeds.
In the domain of geoengineering, the feasibility studies have been undertaken to use a FBG as a seismic sensor and as a bore-well characterizing sensor. A novel FBG seismic sensor package is developed using a single FBG sensor to pick up the seismic waves propagating through the ground generated from earthquakes and ground tremors. Further, FBG sensors are used for measurement of temperature profiles in a bore-well to delineate and characterize the behavior of fractures during seasonal climatic changes. To summarize, the present thesis demonstrates a comprehensive experimental study which bring out the utility of FBG sensors in a variety of challenging applications.
|
2 |
Real-Time Signal Processing and Hardware Development for a Wavelength Modulated Optical Fiber Sensor SystemMusa, Shah M. 09 September 1997 (has links)
The use of optical fiber sensors is increasing widely in civil, industrial, and military applications mainly due to their, (a) miniature size, (b) high sensitivity, (c) immunity from electro-magnetic interference, (d) resistance to harsh environments, (e) remote signal processing ability, and, (f) multiplexing capabilities. Because of these advantages a variety of optical fiber sensing techniques have evolved over the years having potentials for myriad of applications. One very challenging job, for any of these optical fiber sensing techniques, is to implement a stand alone system with the design and development of all the signal processing models along with the necessary hardware, firmware, and software satisfying the real-time signal processing requirements. In this work we first develop the equations for the system model of the wavelength modulated extrinsic Fabry-Perot interferometric (EFPI) optical fiber sensor, and then design and build all the hardware and software necessary to implement a stand-a / Ph. D.
|
3 |
All-Fiber Sensing Techniques For Structural Health Monitoring And Other ApplicationsMadhav, Kalaga Venu 09 1900 (has links)
In this thesis, we explore the four aspects of fiber Bragg grating sensors: mathematical modeling of Fiber Bragg Grating response/spectral characteristics, fabrication using phase mask, application and interrogation. Applications of fiber Bragg gratings, also known as in-fiber gratings, with emphasis on their sensing capabilities, interrogation of an array of sensors and their performance in structural health monitoring scenario are documented.
First, we study the process of photosensitivity phenomenon in glasses, in particular GeO2:SiO2 glasses. For mathematical modeling we consider the 1-D refractive index profile along the propagation axis of an optical fiber drawn from the preform of such glasses. These 1-D index structures exhibit a bandgap for propagation along the fiber axis. We show how the bandgap is dependent on the two structural parameters: index periodicity and effective refractive index. The mathematical model provides the characteristics of three sensor parameters -resonance wavelength also known as the Bragg wavelength (λB ), filter bandwidth (ΔλB ), and reflectivity (R). We show that the evolution of the index structure in germanosilicate glasses is dependent on the inscription parameters such as exposure time, intensity of the laser used for inscribing, the interference pattern, and coherence of the laser system. In particular, a phase mask is used as the diffffacting element to generate the required interference pattern, that is exposed on the photosensitive fiber. We present a mathematical model of the electromagnetic diffraction pattern behind the phase mask and study the effect of the limited coherence of the writing laser on the interference pattern produced by the diffracting beams from the mask.
Next, we demostrate the sensing capabilities of the fiber Bragg gratings for measuring strain, temperature and magnetic fields. We report linearity of 99.7% and sensitivity of 10.35pm/◦C for the grating temperature sensor. An array of gratings assigned with non-overlapping spectral windows is inscribed in a single fiber and applied for distributed sensing of structural health monitoring of an aircraft’s composite air-brake panel. The performance of these sensors is compared with the industry standard resistance foil gauges. We report good agreement between the two gauges (FBG and RSG).
In some applications it is more desirable to know the spectral content, rather than the magnitude of perturbation. Fiber Bragg gratings sensors can be used to track events that occur in a very small span of time and contain high frequencies. Such applications demand very high speed wavelength demodulation methods. We present two interrogation techniques: wavelength-shift time-stamping (WSTS) and reflectivity division multiplexing (RDM). WSTS interrogation method employs the multiple threshold-crossing technique to quantize the sensor grating fluctuations and in the process produces the time stamps at every level-cross. The time-stamps are assembled and with the a priori knowledge of the threshold levels, the strain signal is reconstructed. The RDM methodology is an extension of the WSTS model to address multiple sensors. We show that by assigning unique reflectivities to each of the sensors in an array, the time-stamps from each of the sensors can be tagged. The time-stamps are collected by virtue of their corresponding pulse heights, and assembled to reconstruct the strain signal of each of the array sensor. We demonstrate that the two interrogation techniques are self-referencing systems, i.e., the speed at which the signals are reconstructed is instantaneous or as fast as the signal itself.
|
4 |
Development of Fiber Bragg Grating Sensor Based Devices for Force, Flow and Temperature Measurement for Emerging Applications in Biomedical DomainShikha, * January 2016 (has links) (PDF)
Efficient and accurate sensing of various parameters is needed for numerous applications. In this regard, different categories of sensors play a significant role and different applications require diverse sensing mechanisms owing to the operating conditions and field constraints. Among the several sensor methodologies available, optical fiber sensors have found significant attention, because of their advantages such as negligible foot print, small mass, immunity to Electromagnetic Interference, etc.
In the category of optical fiber sensors, Fiber Bragg Grating (FBG) sensors have found importance in many fields such as health monitoring of civil structures, environmental monitoring involving gas & humidity sensing, monitoring parameters like pressure, tilt, displacement, etc. In the recent times, FBGs have found applications in biomedical, biomechanical and biosensing fields.
A FBG is a periodic change of the refractive index of the core of a single mode optical fiber along its longitudinal axis. The periodic modulation in the index of refraction is obtained by exposing a photosensitive germanium-doped silica fiber to an intense UV laser beam. FBGs, in the basic form, can sense strain and temperature. However, in recent years, several newer sensing applications of FBGs have been demonstrated. Some of the main features of the FBG sensor which qualify them for diverse sensing applications are high sensitivity, large operational bandwidth, multiplexing & multi modal sensing capability, etc.
In this thesis work, FBG sensor based devices have been developed for newer applications in bio-medical fields for the measurement of force, flow and temperature.
Particularly, novel transduction methodologies have been proposed, in order to convert the measurand parameter into a secondary parameter that can be sensed by the FBG sensor.
The evaluation of the force required for a spinal needle to penetrate various tissue layers from skin to the epidural space is vital. In this work, a novel technique for dynamic monitoring of force experienced by a spinal needle during lumbar puncture using Fiber Bragg Grating (FBG) sensor has been developed. The Fiber Bragg Grating Force Device (FBGFD) developed, measures the force on the spinal needle due to varied resistance offered by different tissue layers during its traversal.
The effect of gauge of the spinal needle used for the lumbar puncture procedure affects the force required for its insertion into the tissue. The FBGFD developed, has been further utilized for a comparative study of the force required for lumbar puncture of various tissue layers with spinal needle of different gauges. The results obtained may serve as a guideline for selection of suitable gauge spinal needle during lumbar puncture minimizing post puncture side effects on patients.
The pulmonary function test carried out using a spirometer, provides vital information about the functional status of the respiratory system of the subject. A Fiber Bragg Grating Spirometer (FBGS) has been developed which has the ability to convert the rate of air flow into a shift in wavelength that can be acquired by the FBG sensor. The FBGS can dynamically acquire the complete breathing sequence comprising of the inhalation phase, pause phase and exhalation phase in terms of the air flow rate along with the time duration of each phase. Methods are adopted to analyse and determine important pulmonary parameters using FBGS and compare these parameters with those obtained with a commercially available hospital grade pneumotachograph spirometer.
Thermal imaging is one of the emerging non-invasive neuro-imaging techniques which can potentially indicate the boundaries of a brain tumor. The variation in tissue surface temperature is indicative of a tumor existence. In this work a FBG temperature sensor (FBGTS) has been developed for thermography of a simulated tissue using Agar material. The temperature of the embedded heater which mimics a brain tumor along with the surface temperature of the tissue model, is acquired using FBGTSs simultaneously. Further, the surface temperatures are studied for varying heater temperatures as well as varying positions of the heater in the simulated tissue model.
To conclude, FBG based devices have been developed in this work, for applications in biomedical domain, with appropriate transduction methodologies for sensing different parameters such as force, flow and temperature.
|
5 |
Design, Development and Validation of Fiber Bragg Grating Sensor Based Devices for Detecting Certain Healthcare ParametersChethana, K January 2016 (has links) (PDF)
Several sensor technologies have been developed and experimented over the last few decades to cater various needs of medical diagnostics. Among these, fiber optic sensors, in particular, Fiber Bragg Grating (FBG) based sensors have attracted considerable attention due to their inherent advantages such electrical passiveness, immunity to Electro Magnetic Interference (EMI), chemical inertness, etc. The present research work focuses on design, development and validation of FBG sensor based devices for measurement of certain healthcare parameters in the context of foot function/gait cycle, cardiac and breathing activity, nostril dominance, hand grip/wrist angle force function, etc. The experimental work presented here emphasizes on the effectiveness and competitiveness of the FBG devices developed, in comparison with standard tools such as Accelerometer, Load cell, Electronic Stethoscope, Electromyogram and Dynamometer.
In the field of human balance, stability and geriatrics, two independent FBG devices namely, Fiber Bragg Grating based Stability Assessment Device (FBGSAD) and Optical Sensor Ground Reaction Force measurement Platform (OSGRFP) have been designed, developed and experimented for postural stability assessment and gait analysis respectively. The result of these studies have significant implications in understanding of the mechanism of plantar strain distribution, identifying issues in gait cycles, detecting foot function discrepancies, identifying individuals who are susceptible to falls and to qualify subjects for balance and stability.
In the field of ergonomic assessment, Fiber Braggs Grating based Hand Grip Device (FBGHGD) is designed and developed for the measurement of hand grip force which helps in the understanding of several important biomechanical aspects such as neuromuscular system function, overall upper-limb strength, vertebral fracture, skeletal muscle function, prediction of disability, incapacity, mortality and bone mass density (forearm, skeletal sites, spine, hip etc.). Further as an extension of this work, the FBGHGD is used for measurement of force generated by the wrist in different positions of the flexion and extension which relates to the wrist muscle activity and its enactment.
In the field of cardiac activity monitoring, a novel, in-vivo, non-invasive and portable device named Fiber Bragg Grating based Heart Beat Device (FBGHBD) is developed for the simultaneous measurement of respiratory and cardiac activities. The work involves designing FBGHBD, validating its performance against traditional diagnostic systems like electronic stethoscope, exploration of its clinical relevance and the usage of FBGHBD in studies involving normal persons and patients with myocardial infarction. The unique design of FBGHBD provides critical information such as nascent morphology of cardiac and breathing activity, heart rate variability, heart beat rhythm, etc., which can assist in early clinical diagnosis of many conditions associated to heart and lung malfunctioning. Further, the scope of this work extends towards evaluating several signal processing algorithms and demonstrating a suitable signal processing architecture for real-time extraction of heart beat and respiratory rates along with its nascent morphologies for critical health care application.
In the area of breath monitoring, a Nostril Pressure and Temperature Device (NPTD) is designed and developed which aims at simultaneous, accurate and real-time measurement of nostril air flow pressure and temperature to aid in clinical diagnosis of nasal dysfunction and associated nose disorders. The results of NPTD can offer certain vital features like breathing pattern, respiratory rate, changes in individual nostril temperature/pressure, nostrils dominance, body core temperature etc., which can assist in early clinical diagnosis of breathing problems associated with heart, brain and lung malfunctioning. Since the research work in this thesis involve experiments engaging human subjects, necessary approvals from the ethical committee is obtained before the experiments and required ethical procedures are followed during all the experimental trials.
|
Page generated in 0.5577 seconds