1 |
高強度GFRPのモードⅠ層間はく離疲労き裂進展におよぼす繊維架橋の影響松原, 剛, MATSUBARA, Go, 尾野, 英夫, ONO, Hideo, 田中, 啓介, TANAKA, Keisuke 07 1900 (has links)
No description available.
|
2 |
Fracture properties of balsa wood and balsa core sandwich compositesShir Mohammadi, Meisam 14 June 2012 (has links)
Favorable properties of Balsa wood make it an interesting alternative in a number of
applications including thermal insulation or as a lightweight core material in
sandwich composites. Increasing use in construction necessitates a better
understanding of its mechanical and failure properties. In the present work, mode I
and mode II fracture toughness for different types of balsa wood and a sandwich
structure (balsa as core and fiber glass as skin layer) are studied experimentally by
using load-displacement diagrams and visually acquired crack growth data. / Graduation date: 2013
|
3 |
In situ tomography investigation of crack growth in carbon fiber laminate composites during monotonic and cyclic loadingAlejandra Margarita Ortiz Morales (11197419) 28 July 2021 (has links)
<div>As the use of fiber-reinforced polymer composites grows in aerospace structures, there is an emerging need to implement damage tolerant approaches. The use of <i>in-situ</i> synchrotron X-ray tomography enables direct observations of progressive damage relative to the microstructural features, which is studied in a T650/5320 laminate composite with varying layup orientations (using 45<sup>o</sup> and -45<sup>o</sup> plies) in a compact tension specimen geometry. Specifically, the interactions of micromechanical damage mechanisms at the notch tip were analyzed through 3D image processing as the crack grew. First, monotonic tests were conducted where X-ray tomography was acquired incrementally between the unloaded state and maximum load. The analysis of the monotonic tension specimens showed intralaminar cracking was dominant during crack initiation, delamination became prevalent during the later stages of crack progression, and fiber breakage was, in general, largely related to intralaminar cracking. After the monotonic tension analysis, modifications were made to the specimen geometry and the loading assembly, and fatigue tests were conducted, also using <i>in-situ</i> synchrotron X-ray tomography. Specifically, tomography images were acquired after select intervals of cyclic loading to examine the crack growth behavior up to 5802 cycles. The analysis of the fatigue tests showed that intralaminar cracking was also dominant, while localized delamination allowed ply cross-over. A finite element analysis was conducted by comparing the crack profile at varying intervals of loading, and the change in stored energy per cycle, dU/dN, was calculated. The combined experimental and simulation analysis showed that when the per ply values of dU/dN were examined, the intralaminar cracking rate collapsed to one curve regardless of the ply orientation, where direct observations of fiber bridging were characterized and associated with a reduction in crack growth rate for the influenced ply. Overall, this work provides a physical understanding of the micromechanics facilitating intralaminar crack growth in composites, providing engineers the necessary assessments for slow crack growth approaches in structural composite materials.<br></div>
|
Page generated in 0.057 seconds