• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Genetics of Cotton Fiber Elongation

Ng, Eng Hwa 16 December 2013 (has links)
Fiber elongation (ability to stretch before breaking) is one of the key components in determining overall yarn quality. Elongation in U.S. upland cotton (G. hirsutum L.) has remained largely neglected due to: absence of monetary incentives for growers to produce high elongation cotton; lack of research interests among breeders; and absence of a reliable fiber testing system for elongation. This study was conducted to determine the genetics of cotton fiber elongation via a diallel and generation means analysis (GMA). Findings from this study should lay the foundation for future breeding work in cotton fiber elongation. Of the seven distinctive upland parents used for the diallel study, general combining ability was far more prominent than specific combing ability for fiber elongation. Cultivar PSC 355 and Dever experimental line were the two parents identified as good combiners for fiber elongation in this study. The slight negative correlation between fiber elongation and strength remained true. Highly significant negative correlation was observed between fiber upper half mean length and elongation. Both Stelometer and HVI elongation measurements correlated well with values of 0.85 and 0.82 in 2010 and 2011, respectively. For the six families used in the GMA analysis, additive genetic control was prevalent over dominance effect. Based on the scaling test, no significant epistatic interaction was detected for fiber elongation. As expected, additive variance constituted a much larger portion of total genetic variation in fiber elongation than the dominance variance. On average, larger numbers of effective factor were identified in fiber elongation than all other fiber traits tested, suggesting that parents used in the GMA study are carrying different genetic materials/ loci for fiber elongation. Considerable gains in fiber elongation may be achieved by selectively crossing these materials in a pure-line breeding scheme while holding other important fiber traits constant.
2

Comparative Proteomic Analysis of Cotton Fiber Development and Protein Extraction Method Comparison in Late Stage Fibers

Mujahid, Hana, Pendarvis, Ken, Reddy, Joseph, Nallamilli, Babi, Reddy, K., Nanduri, Bindu, Peng, Zhaohua 03 February 2016 (has links)
The distinct stages of cotton fiber development and maturation serve as a single-celled model for studying the molecular mechanisms of plant cell elongation, cell wall development and cellulose biosynthesis. However, this model system of plant cell development is compromised for proteomic studies due to a lack of an efficient protein extraction method during the later stages of fiber development, because of a recalcitrant cell wall and the presence of abundant phenolic compounds. Here, we compared the quality and quantities of proteins extracted from 25 dpa (days post anthesis) fiber with multiple protein extraction methods and present a comprehensive quantitative proteomic study of fiber development from 10 dpa to 25 dpa. Comparative analysis using a label-free quantification method revealed 287 differentially-expressed proteins in the 10 dpa to 25 dpa fiber developmental period. Proteins involved in cell wall metabolism and regulation, cytoskeleton development and carbohydrate metabolism among other functional categories in four fiber developmental stages were identified. Our studies provide protocols for protein extraction from maturing fiber tissues for mass spectrometry analysis and expand knowledge of the proteomic profile of cotton fiber development.
3

Improvement of Work-to-Break Characteristics of Cotton (Gossypium hirsutum L.) Fibers and Yarn through Breeding and Selection for Improved Fiber Elongation

Osorio Marin, Juliana 1982- 14 March 2013 (has links)
The development of cottons with improved fiber quality has been a major objective in breeding programs around the world. Breeders have focused their attention on improving fiber strength and length, and have generally not used fiber elongation in the selection process. Although literature has reported a negative correlation between fiber elongation and tenacity, this correlation is weak and should not prevent breeders from simultaneously improving fiber tenacity and fiber elongation. Furthermore, the work of rupture property, important in the spinning process, could be best enhanced by improving both fiber tenacity and fiber elongation. Fifteen populations were developed in 2007 by crossing good quality breeding lines with high elongation measurements to ‘FM 958’; a High Plains standard cultivar with good fiber quality but reduced elongation. Samples in every generation were ginned on a laboratory saw gin, and the lint was tested on HVI (High Volume Instrument). The F2 and F3 generations showed a wide range of variation for elongation (6.9% - 12.8% for the F2 and 4% - 9.20% for the F3) allowing divergent selection for low and high fiber elongation. A correlation (r) of -0.32 between strength and elongation was observed in the F2 individual plant selections. In the F3, the correlation (r) between strength and elongation was -0.36, and in the F4 the correlation (r) was -0.08. Nine lines were selected from the original 15 populations for spinning tests. The correlation between fiber elongation and strength for these lines was positive (r=0.424), indicating that with targeted selection, fiber elongation and strength can be simultaneously improved. Fiber elongation was positively correlated with yarn tensile properties tenacity (r=0.11), work-to-break (r=0.68) and breaking elongation (r=0.87); and was negatively correlated with yarn evenness properties, number of thin places (r=-0.16), number of thick places (r=-0.9), nep count (r=-0.24), hairiness (r=-0.38) and total number of imperfections (r=-0.38). All selections for high elongation were superior for all tensile properties compared to the low selections and the check in the analysis over locations and in each location. Furthermore, selections for high elongation were significantly different from the selections for low elongation and the check. In addition to developing lines for fiber spinning tests with improved, or differentiated, fiber elongation, this project was amended to evaluate and determine the heritability of fiber elongation. Three different methodologies were used to obtain estimates of heritability; variance components, parent off-spring regression, and realized heritability using F3, F4, and F5 generation. No inbreeding was assumed because there was no family structure in the generations within this study. Estimates of heritability by the variance component methods in the F3, F4 and F5 were 69.5%, 56.75% and 47.9% respectively; indicating that 40-50% of the variation was due to non-genetic effects. Parent off-spring regression estimates of heritability were 66.1% for the F3-4 and 62.8% for the F4-5; indicating a high resemblance from parents to off-spring. Estimates of realized heritability were obtained to determine the progress realized from selection for the low and high selection for fiber elongation. Estimates were intermediate (0.44–0.55), indicating moderately good progress from selection. The results from this project demonstrate that it is possible to improve fiber elongation and to break the negative correlation between elongation and strength. Furthermore, it has been demonstrated that improving fiber elongation results in the increase of length uniformity index and decreased short fiber content. Additionally, directed divergent selection was a successful methodology for the improvement of fiber elongation, and was useful to demonstrate that higher fiber elongation has a positive effect on yarn tensile properties, yarn evenness and processing. The development of new cultivars with improved fiber elongation will improve the quality and reputation of U. S.-grown cotton. The ultimate result will be better yarn quality and improved weaving efficiency, and particularly address current weaknesses in U. S. –grown cotton cultivars, especially from the High Plains of Texas, of more short fiber content, lower uniformity ratios, and weaker yarn strength.

Page generated in 0.1118 seconds