Spelling suggestions: "subject:"fiberoptic fluorescence microscope"" "subject:"fibreoptic fluorescence microscope""
1 |
Unraveling Phytosulfokine Trafficking in Arabidopsis thaliana Using Fiber-Optic Fluorescence MicroscopyObuaba, Issaka 01 December 2024 (has links) (PDF)
As sessile organisms, plants manage stress through complex signaling networks involving phytohormones such as phytosulfokine (PSK). PSK, a disulfated pentapeptide, regulates plant growth, development, and stress responses by interacting with specific PSK receptors (PSKRs). In this study, we explored the trafficking dynamics of PSK, its post-application fate, and the synthesis of an analog. We administered both native PSK and a fluorescent version tagged with TAMRA (5(6)-carboxytetramethylrhodamine) to various Arabidopsis thaliana genotypes, including wild type, a PSKR-deficient mutant, and a strain overexpressing PSKR1 tagged with green fluorescent protein (GFP) over the wild-type background. Fiber-optic fluorescence microscopy revealed that receptor presence influences PSK’s internal movement. Additionally, we extracted TAMRA–PSK from treated plants and recovered it using solid-phase extraction to assess its stability post-application. HPLC analysis suggested that TAMRA–PSK is substantially unchanged in the plant matrix. Furthermore, a PSK analog was partially synthesized via solid-phase peptide synthesis for future studies.
|
2 |
Synthesis of Phytosulfokine Analogs as Probes for Studying Plant Signaling and Molecular TraffickingNtim, Thomas 01 December 2021 (has links)
Plants are exposed to a wide range of biotic and abiotic stresses that hinder their growth and reduce crop productivity. In their adaptive response, plants use signaling molecules that are trafficked throughout the plant. This research focuses on the chemical synthesis and assessment of analogs of the plant signal phytosulfokine (PSK, a sulfated pentapeptide), its delivery to plants and its observation using a fiber-optic fluorescence microscope. PSK regulates growth, cell expansion, heat tolerance, and tissue longevity. Analogs of PSK were synthesized using solid-phase peptide synthesis. Pure PSK and TAMRA-labeled PSK were delivered into the wild-type Arabidopsis thaliana Col-0 and a transgenic line expressing PSKR-GFP (PSK receptor – green fluorescent protein). PSKR-GFP could be detected in imaging experiments, but no internalization was observed upon treatment with PSK. Successful implementation of a microscopic approach suited for live plants opens a path to understanding how plants signal and adapt under different stress conditions.
|
Page generated in 0.1077 seconds