• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Designing with long fibre reinforced polyamides : practice and theory

O'Reagan, Desmond F. January 1994 (has links)
No description available.
2

Designing PU resins for fibre composite applications

Al-Obad, Zoalfokkar January 2018 (has links)
This thesis focuses on designing thermoplastic composites with high mechanical properties and a low processing temperature. Thermoplastic composites, which are used in this work, are composed of thermoplastic polyurethane (TPU) matrices and plain woven E-glass fabrics (GFs). TPUs were synthesised with large quantities of hard segments (HS), including 70% and 90%wt HS. The GF-TPU composites manufactured in this study have a melting point of around 175oC. As such, 180oC represents the processing temperature, which was used to produce GF-TPU composites. The influences of HS content and annealing treatment at 80oC on the thermal, dynamic mechanical and mechanical properties of TPU samples and GF-TPU composites with 25% fibre volume fraction (Vf) have been investigated. The highest crystallinity, storage modulus, Tg, yield strength, tensile strength and tensile modulus of all the TPU samples are seen in the TPU/90 samples annealed for 4 days. The TPU/90 samples display higher tensile properties than the TPU/70 and polypropylene (PP) samples, while the PP samples show the greatest elongation at break point. Furthermore, the tensile properties of the TPU/70 and TPU/90 samples are much higher than those of commercial TPUs. As such, annealed GF-TPU/90 composites with 25% Vf present the greatest dynamic mechanical, flexural, and tensile properties. GF-TPU/90 composites with 25% Vf show higher flexural strength than GF-PP composites or GF-polyamide 6 (PA6) composites with the same Vf. The effects of fibre surface treatments on the mechanical properties of GF and GF-TPU/70 composites with 25% Vf have also been studied in this investigation. GF treated with burn-off treatment is found to exhibit the lowest tensile properties. The interfacial adhesion between GF treated by NaOH for 0.5hrs and a TPU/70 matrix is greater than between GF treated by acetone for 5hrs and a TPU/70 matrix. Silanised GF presents greater tensile properties than desized GF. Thus, enhanced interfacial adhesion and tensile, flexural, ILSS and GIC properties are observed in the silanised GF-TPU/70 composites than in the desized GF-TPU/70 composites. GF-TPU/70 composites based on GFs treated by NaOH for 0.5hrs then sized with 0.15%wt. aminosilane display the greatest interfacial adhesion, flexural properties, ILSS and GIC, damage tolerance and impact-damage resistance. Conversely, the lowest interfacial adhesion, GIC, damage tolerance and impact-damage resistance are seen in the GF-PP composites based on 25% Vf as-received GF. There is a significant increase in the tensile and flexural properties of GF-TPU/90 composites with increasing the Vf from 25% to 50%. Moreover, the flexural strength of GF-TPU/90 composites with 50% Vf is not only higher than that of GF-EP composites or GF-vinyl ester composites with normalised 50% Vf, but is also much higher than that of GF-PP composites with 50% Vf. Despite this result, GF-TPU/90 composites with 50% Vf show the lowest fracture toughness, impact-damage resistance and damage tolerance, which are improved by adding 25% and 50%wt. of TPU/70 to the TPU/90 matrix. GF-TPU/90 composites based on a modified matrix have higher GIC, GIIC, impact-damage resistance and damage tolerance than GF-TPU/90 composites based on an unmodified matrix. The GIC, GIIC, impact-damage resistance and damage tolerance of GF-TPU/90 composites based on a modified matrix increase with increasing the percentage of TPU/70. Hence, the highest GIC, GIIC, impact-damage resistance and damage tolerance are seen in the GF-TPU/90 composites based on a modified matrix with 50%wt. of TPU/70.

Page generated in 0.0948 seconds