• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural insights into fibrillar proteins from solid-state NMR spectroscopy / Études structurales des protéines fibrillaires par spectroscopie de RMN à l’état solide

Habenstein, Birgit 19 October 2011 (has links)
La RMN à l’état solide est une méthode de choix pour l’étude des protéines insolubles et des complexes protéiques de haut poids moléculaire. L’insolubilité intrinsèque des protéines fibrillaires, ainsi que leur architecture complexe, rendent difficile leur caractérisation structurale par la cristallographie et par la RMN en solution. La RMN à l‘état solide n’est pas limitée par le poids moléculaire et constitue donc un outil puissant pour l’étude des protéines fibrillaires. L’attribution des résonances RMN est le prérequis pour obtenir des informations structurales à résolution atomique. La première partie de ce travail de thèse décrit le développement de méthodes en RMN à l’état solide pour l’attribution des résonances. Nous avons appliqué ces méthodes afin d’attribuer le domaine C-terminal du prion Ure2 (33 kDa), qui est à ce jour la plus grande protéine attribuée par RMN à l’état solide. Nos résultats fournissent les bases pour l’étude de protéines à haut poids moléculaire à l’échelle atomique. Ceci est démontré dans la seconde partie de ce travail de thèse avec les premières études RMN à l’état solide des fibrilles des prions Ure2 et Sup35. Nous avons caractérisé la structure de ces prions pour les fibrilles entières ainsi que pour les domaines isolés. La troisième fibrille étudiée est l’α- synuclein, fibrille associée à la maladie de Parkinson, pour laquelle nous présentons l’attribution des résonances RMN ainsi que la structure secondaire d’un nouveau polymorphe. Les études présentées ici fournissent de nouvelles clés pour comprendre la diversité des architectures de fibrilles, en considérant les fibrilles comme entités individuelles d’un point de vue structural / Solid-state NMR is the method of choice for studies on insoluble proteins and other high molecular weight protein complexes. The inherent insolubility of fibrillar proteins, as well as their complex architecture, makes the application of x-ray crystallography and solution state NMR difficult. Solid-state NMR is not limited by the molecular weight or by the absence of long-range structural order, and is thus a powerful tool for the 3D structural investigation of fibrillar proteins. The assignment of the NMR resonances is a prerequisite to obtain structural information at atomic level. The first part of this thesis describes the development of solid-state NMR methods to assign the resonances in large proteins. We apply these methods to assign the 33 kDa C-terminal domain of the Ure2p prion which is up to now the largest protein assigned by solid-state NMR. Our results provide the basis to study high molecular weight proteins at atomic level. This is demonstrated in the second part with the first high-resolution solid-state NMR study of Ure2 and Sup35 prion fibrils. We describe the conformation of the functional domains and prion domains in the full-length fibrils and in isolation. The third fibrillar protein addressed in this work is the Parkinson’s disease related α-synuclein whereof we demonstrate the NMR resonance assignment and the secondary structure determination of a new polymorph. Thus, the studies described here provide new insights in the structural diversity of fibril architectures, and plead to view fibrils as individuals from a structural point of view, rather than a homogenous protein family

Page generated in 0.0521 seconds