• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Integrated Current Sensor using Giant Magneto Resistive (GMR) Field Detector for Planar Power Module

Kim, Woochan 19 December 2012 (has links)
Conventional wire bond power modules have limited application for high-current operation, mainly because of their poor thermal management capability. Planar power modules have excellent thermal management capability and lower parasitic inductance, which means that the planar packaging method is desirable for high-power applications. For these reasons, a planar power module for an automotive motor drive system was developed, and a gate-driver circuit with an over-current protection was planned to integrate into the module. This thesis discusses a current-sensing method for the planar module, and the integrated gate driver circuit with an over-current protection. After reviewing several current-sensing methods, it becomes clear that most popular current-sensing methods, such as the Hall-Effect sensor, the current transformer, the Shunt resistor, and Rogowski coils, exhibit limitations for the planar module integration. For these reasons, a giant magneto resistive (GMR) magnetic-field detector was chosen as a current-sensing method. The GMR sensor utilizes the characteristics of the giant magneto resistive (GMR) effect in that it changes its resistance when it is exposed to the magnetic-flux. Because the GMR resistor can be fabricated at the wafer level, a packaged GMR sensor is very compact when compared with conventional current sensors. In addition, the sensor detects magnetic-fields, which does not require direct contact to the current-carrying conductor, and the bandwidth of the sensor can be up to 1 MHz, which is wide enough for the switching frequencies of most of motor drive applications. However, there are some limiting factors that need to be considered for accurate current measurement: • Operating temperature • Magnetic-flux density seen by a GMR resistor • Measurement noise If the GMR sensor is integrated into the power module, the ambient temperature of the sensor will be highly influenced by the junction temperature of the power devices. Having a consistent measurement for varying temperature is important for module-integrated current sensors. An experiment was performed to see the temperature characteristics of a GMR sensor. The measurement error caused by temperature variation was quantified by measurement conditions. This thesis also proposes an active temperature error compensation method for the best use of the GMR sensor. The wide current trace of the planar power module helps to reduce the electrical/thermal resistance, but it hinders having a strong and constant magnetic-field-density seen by the GMR sensor. In addition, the eddy-current effect will change the distribution of the current density and the magnetic-flux-density. These changes directly influence the accurate measurement of the GMR sensor. Therefore, analyzing the magnetic-flux distribution in the planar power module is critical for integrating the GMR sensor. A GMR sensor is very sensitive to noise, especially when it is sensing current flowing in a wide trace and exposed to external fields, neither of which can be avoided for the operation of power modules. Post-signal processing is required, and the signal-conditioning circuit was designed to attenuate noise. The signal-conditioning circuit was designed using an instrumentation amplifier, and the circuit attenuated most of the noise that hindered accurate measurement. The over-current protection circuit along with the gate driver circuit was designed, and the concept was verified by experiments. The main achievements of this study can be summarized as: • Characterization of conventional current-sensing methods • Temperature characterization of the GMR resistor • Magnetic-flux distribution of the planar power module • Design of the signal-conditioning circuit and over-current protection circuit / Master of Science
2

Study of New Miniaturized Microwave Devices based on Ratchet Effect in an Environment of Asymmetric Nano-Scatterers / Etude de nouveaux dispositifs miniaturisés micro-ondes basés sur l'effet Ratchet dans un environnement de nano diffuseurs asymétriques

Medhat Abdel Maksoud, Dina 15 October 2012 (has links)
La nanotechnologie est un domaine en voie d'expansion qui a attiré l'attention de la recherche en raison de ses applications potentielles illimitées. La technologie des ondes millimétriques est un autre domaine intéressant qui joue un rôle de premier plan dans le développement des systèmes de communications sans fil. La combinaison de ces deux champs de recherche avancée, donne naissance à l'innovation du Dispositif Ratchet qui est une nouvelle application qui représente un vrai défi. Ce dispositif est de taille nanométrique et son concept d'opération consiste à générer une tension DC lorsque le dispositif, basé sur le gaz d'électron bidimensionnel, est rayonné par l'énergie des micro-ondes. L'objectif de cette thèse est d'essayer d'améliorer la réponse du dispositif, ce qui ouvre de nouvelles perspectives dans la fabrication des détecteurs de champ à haute fréquence et à l'échelle nanométrique. Malheureusement, les Dispositifs Ratchet actuels, basés sur des hétérostructures de semiconducteurs, réalisés jusqu'à présent fonctionnent à basse température pour assurer une grande mobilité électronique. Cette condition nécessite l'utilisation d'un setup expérimental complexe qui a un grand impact sur la tension induite et sur la reproductibilité du phénomène Ratchet observé. Dans ce contexte, le travail effectué dans le cadre de cette thèse a abordé ce problème en deux parties. La première partie concerne l'analyse électromagnétique du setup expérimental. Ceci a été réalisé par la mise en oeuvre des simulations électromagnétiques intenses. D'autre part, différentes solutions ont été proposées afin d'optimiser le setup et ainsi améliorer la tension Ratchet produite. Outre l'étude électromagnétique, certaines mesures de modulation ont été réalisées pour tester la faisabilité du Dispositif Ratchet comme un démodulateur d'amplitude. La deuxième partie de cette thèse traite l'étude de la matière qui compose le Dispositif Ratchet. Récemment, le graphène commence à envahir le monde scientifique et technologique avec ses fascinantes propriétés électroniques, tels que sa mobilité d'électrons élevée à température ambiante, où les matériaux conventionnels sont en train de confronter des obstacles. En conséquence, l'idée de fabriquer un Dispositif Ratchet à base de graphène au lieu des hétérojonctions de semiconducteurs, a été introduite. Plusieurs modèles de conception, caractérisation et mesures RF ont été accomplis en vue d'obtenir un Dispositif Ratchet fiable approprié pour de nombreuses applications pratiques à la température ambiante, dans la gamme de fréquences micro-ondes et pourraient s'étendre à la bande térahertz. / Nanotechnology is a growing field that has attracted significant research attention due to its unlimited potential applications. Millimeter wave technology is another interesting field that plays a leading role in the development of wireless communications systems. Combining these two advanced research fields together, has given rise to the innovation of the Ratchet Device which is now a new challenging application. This device has a nanoscale size and its concept of operation consists of generating a DC voltage when radiating a two-dimensional electron gas based device with microwave energy. The aim of this thesis is in trying to improve the device response and hence opening new perspectives in the fabrication of high frequency field detectors on the nanoscale level. Unfortunately, the current Ratchet Devices, based on semiconductor heterostructures, realized till now, operate at low temperatures to ensure high electron mobility. This condition necessitates the use of a complex experimental setup that has a great impact on the induced voltage and on the reproducibility of the observed Ratchet phenomenon. In this context, the work performed within the framework of this thesis has addressed this problem in two parts. The first part concerns the electromagnetic analysis of the experimental setup behavior. This has been achieved by implementing intensive full wave electromagnetic simulations. Different solutions have been proposed to optimize the setup and thus enhance the Ratchet voltage produced. In addition to the electromagnetic study, some modulation measurements have been performed to test the feasibility of the Ratchet Device as an amplitude demodulator. The second part of this thesis deals with the study of the material composing the Ratchet Device. Recently, graphene has started to invade the scientific and the technological world with its fascinating electronic properties, such as its high electron mobility at room temperature, which distinguishes it from conventional materials that typically collide with obstacles. As a result, the idea of fabricating a Ratchet Device based on graphene instead of semiconductor heterojunctions has been introduced. Several design models, characterizations and RF measurements have been performed in order to obtain a reliable Ratchet Device suitable for many practical applications at room temperature. This has been done in the microwave frequency range and can also extend to the terahertz band.

Page generated in 0.0587 seconds