• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse statistique des réseaux et applications aux sciences humaines / Statistical analysis of networks and applications in human sciences

Zreik, Rawya 30 November 2016 (has links)
Depuis les travaux précurseurs de Moreno (1934), l’analyse des réseaux est devenue une discipline forte, qui ne se limite plus à la sociologie et qui est à présent appliquée à des domaines très variés tels que la biologie, la géographie ou l’histoire. L’intérêt croissant pour l’analyse des réseaux s’explique d’une part par la forte présence de ce type de données dans le monde numérique d’aujourd’hui et, d’autre part, par les progrès récents dans la modélisation et le traitement de ces données. En effet, informaticiens et statisticiens ont porté leurs efforts depuis plus d’une dizaine d’années sur ces données de type réseau en proposant des nombreuses techniques permettant leur analyse. Parmi ces techniques on note les méthodes de clustering qui permettent en particulier de découvrir une structure en groupes cachés dans le réseau. De nombreux facteurs peuvent exercer une influence sur la structure d’un réseau ou rendre les analyses plus faciles à comprendre. Parmi ceux-ci, on trouve deux facteurs importants: le facteur du temps, et le contexte du réseau. Le premier implique l’évolution des connexions entre les nœuds au cours du temps. Le contexte du réseau peut alors être caractérisé par différents types d’informations, par exemple des messages texte (courrier électronique, tweets, Facebook, messages, etc.) échangés entre des nœuds, des informations catégoriques sur les nœuds (âge, sexe, passe-temps, Les fréquences d’interaction (par exemple, le nombre de courriels envoyés ou les commentaires affichés), et ainsi de suite. La prise en considération de ces facteurs nous permet de capturer de plus en plus d’informations complexes et cachées à partir des données. L’objectif de ma thèse été de définir des nouveaux modèles de graphes aléatoires qui prennent en compte les deux facteurs mentionnés ci-dessus, afin de développer l’analyse de la structure du réseau et permettre l’extraction de l’information cachée à partir des données. Ces modèles visent à regrouper les sommets d’un réseau en fonction de leurs profils de connexion et structures de réseau, qui sont statiques ou évoluant dynamiquement au cours du temps. Le point de départ de ces travaux est le modèle de bloc stochastique (SBM). Il s’agit d’un modèle de mélange pour les graphiques qui ont été initialement développés en sciences sociales. Il suppose que les sommets d’un réseau sont répartis sur différentes classes, de sorte que la probabilité d’une arête entre deux sommets ne dépend que des classes auxquelles ils appartiennent. / Over the last two decades, network structure analysis has experienced rapid growth with its construction and its intervention in many fields, such as: communication networks, financial transaction networks, gene regulatory networks, disease transmission networks, mobile telephone networks. Social networks are now commonly used to represent the interactions between groups of people; for instance, ourselves, our professional colleagues, our friends and family, are often part of online networks, such as Facebook, Twitter, email. In a network, many factors can exert influence or make analyses easier to understand. Among these, we find two important ones: the time factor, and the network context. The former involves the evolution of connections between nodes over time. The network context can then be characterized by different types of information such as text messages (email, tweets, Facebook, posts, etc.) exchanged between nodes, categorical information on the nodes (age, gender, hobbies, status, etc.), interaction frequencies (e.g., number of emails sent or comments posted), and so on. Taking into consideration these factors can lead to the capture of increasingly complex and hidden information from the data. The aim of this thesis is to define new models for graphs which take into consideration the two factors mentioned above, in order to develop the analysis of network structure and allow extraction of the hidden information from the data. These models aim at clustering the vertices of a network depending on their connection profiles and network structures, which are either static or dynamically evolving. The starting point of this work is the stochastic block model, or SBM. This is a mixture model for graphs which was originally developed in social sciences. It assumes that the vertices of a network are spread over different classes, so that the probability of an edge between two vertices only depends on the classes they belong to.

Page generated in 0.0969 seconds