Spelling suggestions: "subject:"finite element mest""
1 |
Optimization Of An Unstructured Finite Element Mesh For Tide And Storm Surge Modeling Applications In The Western North Atlantic OceanKojima, Satoshi 01 January 2005 (has links)
Recently, a highly resolved, finite element mesh was developed for the purpose of performing hydrodynamic calculations in the Western North Atlantic Tidal (WNAT) model domain. The WNAT model domain consists of the Gulf of Mexico, the Caribbean Sea, and the entire portion of the North Atlantic Ocean found west of the 60° W meridian. This high resolution mesh (333K) employs 332,582 computational nodes and 647,018 triangular elements to provide approximately 1.0 to 25 km node spacing. In the previous work, the 333K mesh was applied in a Localized Truncation Error Analysis (LTEA) to produce nodal density requirements for the WNAT model domain. The goal of the work herein is to use these LTEA-based element sizing guidelines in order to obtain a more optimal finite element mesh for the WNAT model domain, where optimal refers to minimizing nodes (to enhance computational efficiency) while maintaining model accuracy, through an automated procedure. Initially, three finite element meshes are constructed: 95K, 60K, and 53K. The 95K mesh consists of 95,062 computational nodes and 182,941 triangular elements providing about 0.5 to 120 km node spacing. The 60K mesh contains 60,487 computational nodes and 108,987 triangular elements. It has roughly 0.5 to 185 km node spacing. The 53K mesh includes 52,774 computational nodes and 98,365 triangular elements. This is a particularly coarse mesh, consisting of approximately 0.5 to 160 km node spacing. It is important to note that these three finite element meshes were produced automatically, with each employing the bathymetry and coastline (of various levels of resolution) of the 333K mesh, thereby enabling progress towards an optimal finite element mesh. Tidal simulations are then performed for the WNAT model domain by solving the shallow water equations in a time marching manner for the deviation from mean sea level and depth-integrated velocities at each computational node of the different finite element meshes. In order to verify the model output and compare the performance of the various finite element mesh applications, historical tidal constituent data from 150 tidal stations located within the WNAT model domain are collected and examined. These historical harmonic data are applied in two types of comparative analyses to evaluate the accuracy of the simulation results. First, qualitative comparisons are based on visual sense by utilizing plots of resynthesized model output and historical tidal constituents. Second, quantitative comparisons are performed via a statistical analysis of the errors between model response and historical data. The latter method elicits average phase errors and goodness of average amplitude fits in terms of numerical values, thus providing a quantifiable way to present model error. The error analysis establishes the 53K finite element mesh as optimal when compared to the 333K, 95K, and 60K meshes. However, its required time step of less than ten seconds constrains its application. Therefore, the 53K mesh is manually edited to uphold accurate simulation results and to produce a more computationally efficient mesh, by increasing its time step, so that it can be applied to forecast tide and storm surge in the Western North Atlantic Ocean on a real-time basis.
|
2 |
Influence Of Topographic Elevation Error On Modeled Storm SurgeBilskie, Matthew 01 January 2012 (has links)
The following presents a method for determining topographic elevation error for overland unstructured finite element meshes derived from bare earth LiDAR for use in a shallow water equations model. This thesis investigates the development of an optimal interpolation method to produce minimal error for a given element size. In hydrodynamic studies, it is vital to represent the floodplain as accurately as possible since terrain is a critical factor that influences water flow. An essential step in the development of a coastal inundation model is processing and resampling dense bare earth LiDAR to a DEM and ultimately to the mesh nodes; however, it is crucial that the correct DEM grid size and interpolation method be employed for an accurate representation of the terrain. The following research serves two purposes: 1) to assess the resolution and interpolation scheme of bare earth LiDAR data points in terms of its ability to describe the bare earth topography and its subsequent performance during relevant tide and storm surge simulations
|
3 |
Generování a optimalizace meshů / Generování a optimalizace meshůMokriš, Dominik January 2012 (has links)
This thesis is devoted to the problem of finding a suitable geometrical de- scription of the domain for the Finite Element Method (FEM). We present the most important methods used in generation and improvement of unstructured triangular meshes (grids) for two dimensional FEM. Possible measures of mesh quality are discussed with respect to their usage in linear Lagrange FEM. The relationship between mesh geometry (especially angles of particular triangles), discretization error and stiffness matrix condition number is examined. Two methods of mesh improvement, based on Centroidal Voronoi Tessellations (CVT) and Optimal Delaunay Triangulations (ODT), are discussed in detail and some results on convergence of CVT based methods are reviewed. Some aspects of these methods, e.g. the relation between density of boundary points and interior mesh vertices and the treatment of the boundary triangles is reconsidered in a new way. We have implemented these two methods and we discuss possible im- provements and new algorithms. A geometrically very interesting idea of recent alternative to FEM, Isogeometric Analysis (IGA), is outlined and demonstrated on a simple example. Several numerical tests are made in order to the compare the accuracy of solutions of isotropic PDEs obtained by FEM on bad mesh, mesh improved...
|
4 |
Návrh ojnice vznětového leteckého motoru / Connecting Rod Design of Diesel Aircraft EngineMaršálek, Ondřej January 2011 (has links)
The thesis deals with complex connecting rod design of two stroke diesel engine with regard to minimising its weight. Three versions of design are suggested and for each of them the stress analyses are implemented and the fatigue safety factors are determined. On the basis of results of implemented analyses and evaluation of all the aspects the most appropriate design is chosen and the production drawing is drawn according to it. In the conclusion, hydrodynamic lubrication plain bearings, which are the integral part of every connecting rod, are designed.
|
5 |
Aplikace vysokotlakého palivového systému na vznětový motor / The High Pressure Fuel System Application for CI-engineŠevčík, Ondřej January 2018 (has links)
This thesis focuses on the design of new high pressure injection system application on diesel engine. The design came from company Zetor’s demands. For this application was chosen system Common Rail supplied by company Bosch. Assignment was separated into several tasks. Research of suitable components for low pressure section, design of waste system and high pressure injection tubes design including injector clamping. Due to injectors used in this system was necessary to redesign cover for valves and even new system to lead wires from outside of the engine to injectors. Injector is attached by screw connection, which is composed from screw and clamping jaw. These parts are subjected to an analytic calculations. Clamping jaw of injector is even subjected to a FEM analysis, which focuses on fatigue life. Finally, the drawings were documented.
|
Page generated in 0.1134 seconds