1 |
Finite element analysis of the human left ventricle in diastole and systoleBeecham, M. C. January 1997 (has links)
Previously, at Brunel University, two computer programs had been developed to facilitate the analysis of the diastolic material properties of the human left ventricle. These two computer programs consisted of; a finite element program, "XL1", which ran upon a Cray-1S/1000 and a post-processor and pre-processor, "HEART", which ran upon the Multics computer system. The computer program "HEART" produced the finite element model, which was then solved by "XL 1", and it also allowed for plotting the results in graphical form, The patient data was supplied by the Royal Brompton Hospital in the form of digitised cine-angiographic X-ray data plus pressure readings. The first stage was to transfer the two separate computer programs "HEART" and "XL 1" to the Sun Workstation system. The two programs were then combined to form a single package which can be used for the automated analysis of the patient data. An investigation into the effect that the elastic modulus ratio has upon the deformation of the left ventricle during diastole was performed. It was found that the effect is quite small and that using this parameter to match overall shape deformation would be extremely sensitive to the accuracy of the initial data. The main part of this work was the implementation of active cardiac contraction, by means of a thermal stress analogy, into the finite element program. This allows the systolic part of the cardiac cycle to be analysed. The analysis of the factors that affect cardiac contraction, including the material properties and boundary conditions was performed. This model was also used to investigate the effect that conditions such as ischaemia and the formation of scar tissue have upon the systolic left ventricle. The use of the thermal stressing analogy for cardiac contraction was demonstrated to mirror global and local deformation when applied to a realistic ventricular geometry.
|
2 |
Viscoplastic modelling of embankments on soft soilsManivannan, Ganeshalingam, Aerospace, Civil & Mechanical Engineering, Australian Defence Force Academy, UNSW January 2005 (has links)
A major instrumented geosynthetic reinforced approach embankment was constructed to 5.5 m elevation above ground, with prefabricated vertical drains, over a soft compressible clay deposit at Leneghan, Newcastle, Australia in May 1995. The field monitoring of settlements for over six years shows that the embankment manifests significant creep. The instrumentation, field performance and the finite element analyses for predicting the long-term performance of this embankment are described in this thesis. The maximum settlement of 1.1 m was observed one year after the completion of construction. However, the embankment continued to settle at a rate of 0.4 mm/day for the next 5 years. The horizontal displacements of 0.09-0.14 m at various locations and the maximum reinforcement strains of 0.67% were recorded. A numerical model was developed to perform a fully coupled large deformation elasto-viscoplastic finite element analysis for this performance prediction based on creep model proposed by Kutter and Sathialingam (1992). The foundation soil was modelled with creep material behaviour using six noded linear strain triangular elements. A well-documented case history ??? Sackville embankment, New Brunswick, Canada was analysed using this model as a benchmark problem and the model was found to predict all the behaviour characteristics reasonably well. The results obtained from finite element analysis using this model are shown to be in reasonable agreement with the observed performance of Leneghans embankment in terms of settlements, horizontal displacements, excess pore pressures and geosynthetic strains. But, the prediction of settlements was less than satisfactory beyond April 1999. Finite element analyses were performed to study the sensitivity of this embankment behaviour on the variation of hydraulic conductivity values and geosynthetic reinforcement properties. This sensitivity study indicated that the kv variation, the kh/kv ratio and the nominal values of geosynthetic properties adopted in the benchmark analysis are reasonable enough for the long-term behaviour prediction.
|
3 |
Viscoplastic modelling of embankments on soft soilsManivannan, Ganeshalingam, Aerospace, Civil & Mechanical Engineering, Australian Defence Force Academy, UNSW January 2005 (has links)
A major instrumented geosynthetic reinforced approach embankment was constructed to 5.5 m elevation above ground, with prefabricated vertical drains, over a soft compressible clay deposit at Leneghan, Newcastle, Australia in May 1995. The field monitoring of settlements for over six years shows that the embankment manifests significant creep. The instrumentation, field performance and the finite element analyses for predicting the long-term performance of this embankment are described in this thesis. The maximum settlement of 1.1 m was observed one year after the completion of construction. However, the embankment continued to settle at a rate of 0.4 mm/day for the next 5 years. The horizontal displacements of 0.09-0.14 m at various locations and the maximum reinforcement strains of 0.67% were recorded. A numerical model was developed to perform a fully coupled large deformation elasto-viscoplastic finite element analysis for this performance prediction based on creep model proposed by Kutter and Sathialingam (1992). The foundation soil was modelled with creep material behaviour using six noded linear strain triangular elements. A well-documented case history ??? Sackville embankment, New Brunswick, Canada was analysed using this model as a benchmark problem and the model was found to predict all the behaviour characteristics reasonably well. The results obtained from finite element analysis using this model are shown to be in reasonable agreement with the observed performance of Leneghans embankment in terms of settlements, horizontal displacements, excess pore pressures and geosynthetic strains. But, the prediction of settlements was less than satisfactory beyond April 1999. Finite element analyses were performed to study the sensitivity of this embankment behaviour on the variation of hydraulic conductivity values and geosynthetic reinforcement properties. This sensitivity study indicated that the kv variation, the kh/kv ratio and the nominal values of geosynthetic properties adopted in the benchmark analysis are reasonable enough for the long-term behaviour prediction.
|
Page generated in 0.0863 seconds