• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efficient Methods for Automatic Speech Recognition

Seward, Alexander January 2003 (has links)
This thesis presents work in the area of automatic speech recognition (ASR). The thesis focuses on methods for increasing the efficiency of speech recognition systems and on techniques for efficient representation of different types of knowledge in the decoding process. In this work, several decoding algorithms and recognition systems have been developed, aimed at various recognition tasks. The thesis presents the KTH large vocabulary speech recognition system. The system was developed for online (live) recognition with large vocabularies and complex language models. The system utilizes weighted transducer theory for efficient representation of different knowledge sources, with the purpose of optimizing the recognition process. A search algorithm for efficient processing of hidden Markov models (HMMs) is presented. The algorithm is an alternative to the classical Viterbi algorithm for fast computation of shortest paths in HMMs. It is part of a larger decoding strategy aimed at reducing the overall computational complexity in ASR. In this approach, all HMM computations are completely decoupled from the rest of the decoding process. This enables the use of larger vocabularies and more complex language models without an increase of HMM-related computations. Ace is another speech recognition system developed within this work. It is a platform aimed at facilitating the development of speech recognizers and new decoding methods. A real-time system for low-latency online speech transcription is also presented. The system was developed within a project with the goal of improving the possibilities for hard-of-hearing people to use conventional telephony by providing speech-synchronized multimodal feedback. This work addresses several additional requirements implied by this special recognition task. / QC 20100811
2

Automatic Speech Recognition in Somali

Gabriel, Naveen January 2020 (has links)
The field of speech recognition during the last decade has left the research stage and found its way into the public market, and today, speech recognition software is ubiquitous around us. An automatic speech recognizer understands human speech and represents it as text. Most of the current speech recognition software employs variants of deep neural networks. Before the deep learning era, the hybrid of hidden Markov model and Gaussian mixture model (HMM-GMM) was a popular statistical model to solve speech recognition. In this thesis, automatic speech recognition using HMM-GMM was trained on Somali data which consisted of voice recording and its transcription. HMM-GMM is a hybrid system in which the framework is composed of an acoustic model and a language model. The acoustic model represents the time-variant aspect of the speech signal, and the language model determines how probable is the observed sequence of words. This thesis begins with background about speech recognition. Literature survey covers some of the work that has been done in this field. This thesis evaluates how different language models and discounting methods affect the performance of speech recognition systems. Also, log scores were calculated for the top 5 predicted sentences and confidence measures of pre-dicted sentences. The model was trained on 4.5 hrs of voiced data and its corresponding transcription. It was evaluated on 3 mins of testing data. The performance of the trained model on the test set was good, given that the data was devoid of any background noise and lack of variability. The performance of the model is measured using word error rate(WER) and sentence error rate (SER). The performance of the implemented model is also compared with the results of other research work. This thesis also discusses why log and confidence score of the sentence might not be a good way to measure the performance of the resulting model. It also discusses the shortcoming of the HMM-GMM model, how the existing model can be improved, and different alternatives to solve the problem.
3

Rozpoznávácí sítě založené na konečných stavových převodnících pro dopředné a zpětné dekódování v rozpoznávání řeči / Finite-state based recognition networks for forward-backward speech decoding

Hannemann, Mirko Unknown Date (has links)
Pomocí matematického formalismu váhovaných konečných stavových převodníků (weighted finite state transducers WFST) může být formulována řada úloh včetně automatického rozpoznávání řeči (automatic speech recognition ASR). Dnešní ASR systémy široce využívají složených pravděpodobnostních modelů nazývaných dekódovací grafy nebo rozpoznávací sítě. Ty jsou z jednotlivých komponent konstruovány pomocí WFST operací, např. kompozice. Každá komponenta je zde zdrojem znalostí a omezuje vyhledávání nejlepší cesty ve složeném grafu v operaci zvané dekódování. Využití koherentního teoretického rámce garantuje, že výsledná struktura bude optimální podle definovaného kritéria. WFST mohou být v rámci daného polookruhu (semi-ring) optimalizovány pomocí determinizace a minimalizace. Aplikací těchto algoritmů získáme optimální strukturu pro prohledávání, optimální distribuce vah je pak získána aplikací "weight pushing" algoritmu. Cílem této práce je zdokonalit postupy a algoritmy pro konstrukci optimálních rozpoznávacích sítí. Zavádíme alternativní weight pushing algoritmus, který je vhodný pro důležitou třídu modelů -- převodníky jazykového modelu (language model transducers) a obecně pro všechny cyklické WFST a WFST se záložními (back-off) přechody. Představujeme také způsob konstrukce rozpoznávací sítě vhodné pro dekódování zpětně v čase, které prokazatelně produkuje ty samé pravděpodobnosti jako dopředná síť. K tomuto účelu jsme vyvinuli algoritmus pro exaktní reverzi back-off jazykových modelů a převodníků, které je reprezentují. Pomocí zpětných rozpoznávacích sítí optimalizujeme dekódování: ve statickém dekodéru je využíváme pro dvoustupňové dekódování (dopředné a zpětné vyhledávání). Tento přístup --- "sledovací" dekódování (tracked decoding) --- umožnuje zahrnout výsledky vyhledávání z prvního stupně do druhého stupně tak, že se sledují hypotézy obsažené v rozpoznávacím grafu (lattice) prvního stupně. Výsledkem je podstatné zrychlení dekódování, protože tato technika umožnuje prohledávat s  variabilním prohledávacím paprskem (search beam) -- ten je povětšinou mnohem užší než u základního přístupu. Ukazujeme rovněž, že uvedenou techniku je možné využít v dynamickém dekodéru tím, že postupně zjemňujeme rozpoznávání. To navíc vede i k částečné paralelizaci dekódování.
4

Vyhledávání výrazů v řeči pomocí mluvených příkladů / Query-by-Example Spoken Term Detection

Fapšo, Michal January 2014 (has links)
Tato práce se zabývá vyhledáváním výrazů v řeči pomocí mluvených příkladů (QbE STD). Výrazy jsou zadávány v mluvené podobě a jsou vyhledány v množině řečových nahrávek, výstupem vyhledávání je seznam detekcí s jejich skóre a časováním. V práci popisujeme, analyzujeme a srovnáváme tři různé přístupy ke QbE STD v jazykově závislých a jazykově nezávislých podmínkách, s jedním a pěti příklady na dotaz. Pro naše experimenty jsme použili česká, maďarská, anglická a arabská (levantská) data, a pro každý z těchto jazyků jsme natrénovali 3-stavový fonémový rozpoznávač. To nám dalo 16 možných kombinací jazyka pro vyhodnocení a jazyka na kterém byl natrénovaný rozpoznávač. Čtyři kombinace byly tedy závislé na jazyce (language-dependent) a 12 bylo jazykově nezávislých (language-independent). Všechny QbE systémy byly vyhodnoceny na stejných datech a stejných fonémových posteriorních příznacích, pomocí metrik: nesdružené Figure-of-Merit (non pooled FOM) a námi navrhnuté nesdružené Figure-of-Merit se simulací normalizace přes promluvy (utterrance-normalized non-pooled Figure-of-Merit). Ty nám poskytly relevantní údaje pro porovnání těchto QbE přístupů a pro získání lepšího vhledu do jejich chování. QbE přístupy použité v této práci jsou: sekvenční statistické modelování (GMM/HMM), srovnávání vzorů v příznacích (DTW) a srovnávání grafů hypotéz (WFST). Abychom porovnali výsledky QbE přístupů s běžnými STD systémy vyhledávajícími textové výrazy, vyhodnotili jsme jazykově závislé konfigurace také s akustickým detektorem klíčových slov (AKWS) a systémem pro vyhledávání fonémových řetězců v grafech hypotéz (WFSTlat). Jádrem této práce je vývoj, analýza a zlepšení systému WFST QbE STD, který po zlepšení dosahuje podobných výsledků jako DTW systém v jazykově závislých podmínkách.
5

Automatic Speech Recognition Model for Swedish using Kaldi

Wang, Yihan January 2020 (has links)
With the development of intelligent era, speech recognition has been a hottopic. Although many automatic speech recognition(ASR) tools have beenput into the market, a considerable number of them do not support Swedishbecause of its small number. In this project, a Swedish ASR model basedon Hidden Markov Model and Gaussian Mixture Models is established usingKaldi which aims to help ICA Banken complete the classification of aftersalesvoice calls. A variety of model patterns have been explored, whichhave different phoneme combination methods and eigenvalue extraction andprocessing methods. Word Error Rate and Real Time Factor are selectedas evaluation criteria to compare the recognition accuracy and speed ofthe models. As far as large vocabulary continuous speech recognition isconcerned, triphone is much better than monophone. Adding feature transformationwill further improve the speed of accuracy. The combination oflinear discriminant analysis, maximum likelihood linear transformand speakeradaptive training obtains the best performance in this implementation. Fordifferent feature extraction methods, mel-frequency cepstral coefficient ismore conducive to obtain higher accuracy, while perceptual linear predictivetends to improve the overall speed. / Det existerar flera lösningar för automatisk transkribering på marknaden, menen stor del av dem stödjer inte svenska på grund utav det relativt få antalettalare. I det här projektet så skapades automatisk transkribering för svenskamed Hidden Markov models och Gaussian mixture models genom att användaKaldi. Detta för att kunna möjliggöra för ICABanken att klassificera samtal tillsin kundtjänst. En mängd av modellvariationer med olika fonemkombinationsmetoder,egenvärdesberäkning och databearbetningsmetoder har utforskats.Word error rate och real time factor är valda som utvärderingskriterier föratt jämföra precisionen och hastigheten mellan modellerna. När det kommertill kontinuerlig transkribering för ett stort ordförråd så resulterar triphonei mycket bättre prestanda än monophone. Med hjälp utav transformationerså förbättras både precisionen och hastigheten. Kombinationen av lineardiscriminatn analysis, maximum likelihood linear transformering och speakeradaptive träning resulterar i den bästa prestandan i denna implementation.För olika egenskapsextraktioner så bidrar mel-frequency cepstral koefficiententill en bättre precision medan perceptual linear predictive tenderar att ökahastigheten.
6

Statistical approaches for natural language modelling and monotone statistical machine translation

Andrés Ferrer, Jesús 11 February 2010 (has links)
Esta tesis reune algunas contribuciones al reconocimiento de formas estadístico y, más especícamente, a varias tareas del procesamiento del lenguaje natural. Varias técnicas estadísticas bien conocidas se revisan en esta tesis, a saber: estimación paramétrica, diseño de la función de pérdida y modelado estadístico. Estas técnicas se aplican a varias tareas del procesamiento del lenguajes natural tales como clasicación de documentos, modelado del lenguaje natural y traducción automática estadística. En relación con la estimación paramétrica, abordamos el problema del suavizado proponiendo una nueva técnica de estimación por máxima verosimilitud con dominio restringido (CDMLEa ). La técnica CDMLE evita la necesidad de la etapa de suavizado que propicia la pérdida de las propiedades del estimador máximo verosímil. Esta técnica se aplica a clasicación de documentos mediante el clasificador Naive Bayes. Más tarde, la técnica CDMLE se extiende a la estimación por máxima verosimilitud por leaving-one-out aplicandola al suavizado de modelos de lenguaje. Los resultados obtenidos en varias tareas de modelado del lenguaje natural, muestran una mejora en términos de perplejidad. En a la función de pérdida, se estudia cuidadosamente el diseño de funciones de pérdida diferentes a la 0-1. El estudio se centra en aquellas funciones de pérdida que reteniendo una complejidad de decodificación similar a la función 0-1, proporcionan una mayor flexibilidad. Analizamos y presentamos varias funciones de pérdida en varias tareas de traducción automática y con varios modelos de traducción. También, analizamos algunas reglas de traducción que destacan por causas prácticas tales como la regla de traducción directa; y, así mismo, profundizamos en la comprensión de los modelos log-lineares, que son de hecho, casos particulares de funciones de pérdida. Finalmente, se proponen varios modelos de traducción monótonos basados en técnicas de modelado estadístico . / Andrés Ferrer, J. (2010). Statistical approaches for natural language modelling and monotone statistical machine translation [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/7109

Page generated in 0.104 seconds