• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Statistical properties of successive ocean wave parameters

Wist, Hanne Therese January 2003 (has links)
<p>For random waves the free surface elevation can be described by a number of individual wave parameters. The main objective of this work has been to study the statistical properties of individual parameters in successive waves; the wave crest height, the wave height and the wave period.</p><p>In severe sea states the wave crest heights exhibit a nonlinear behavior, which must be reflected in the models. An existing marginal distribution that uses second order Stokes-type nonlinearity is transformed to a two-dimensional distribution by use of the two–dimensional Rayleigh distribution. This model only includes sum frequency effects. A two-dimensional distribution is also established by transforming a second order model including both sum and different frequency effects. Both models are based on the narrow-band assumption, and the effect of finite water depth is included. A parametric wave crest height distribution proposed by Forristall (2000) has been extended to two dimensions by transformation of the two-dimensional Weibull distribution. </p><p>Two successive wave heights are modeled by a Gaussian copula, which is referred to as the Nataf model. Results with two initial distributions for the transformation are presented, the Næss (1985) model and a two-parameter Weibull distribution, where the latter is in best agreement with data. The results are compared with existing models. The Nataf model has also been used for modeling three successive wave heights. Results show that the Nataf transformation of three successive wave heights can be approximated by a first order autoregression model. This means that the distribution of the wave height given the previous wave height is independent of the wave heights prior to the previous wave height. The simulation of successive wave heights can be done directly without simulating the time series of the complete surface elevation. </p><p>Successive wave periods are modeled with the Nataf transformation by using a two-parameter Weibull distribution and a generalized Gamma distribution as the initial distribution, where the latter is in best agreement with data. Results for the marginal and two-dimensional distributions are compared with existing models. In practical applications, it is often of interest to consider successive wave periods with corresponding wave heights exceeding a certain threshold. Results show that the distribution for successive wave periods when the corresponding wave heights exceed the root-mean-square value of the wave heights can be approximated by a multivariate Gaussian distribution. When comparing the results with data, a long time series is needed in order to obtain enough data cases. Results for three successive wave periods are also presented. </p><p>The models are compared with field data from the Draupner field and the Japan Sea, and with laboratory data from experiments at HR Wallingford. In addition, data from numerical simulations based on second order wave theory, including both sum and frequency effects, are included.</p>
2

Statistical properties of successive ocean wave parameters

Wist, Hanne Therese January 2003 (has links)
For random waves the free surface elevation can be described by a number of individual wave parameters. The main objective of this work has been to study the statistical properties of individual parameters in successive waves; the wave crest height, the wave height and the wave period. In severe sea states the wave crest heights exhibit a nonlinear behavior, which must be reflected in the models. An existing marginal distribution that uses second order Stokes-type nonlinearity is transformed to a two-dimensional distribution by use of the two–dimensional Rayleigh distribution. This model only includes sum frequency effects. A two-dimensional distribution is also established by transforming a second order model including both sum and different frequency effects. Both models are based on the narrow-band assumption, and the effect of finite water depth is included. A parametric wave crest height distribution proposed by Forristall (2000) has been extended to two dimensions by transformation of the two-dimensional Weibull distribution. Two successive wave heights are modeled by a Gaussian copula, which is referred to as the Nataf model. Results with two initial distributions for the transformation are presented, the Næss (1985) model and a two-parameter Weibull distribution, where the latter is in best agreement with data. The results are compared with existing models. The Nataf model has also been used for modeling three successive wave heights. Results show that the Nataf transformation of three successive wave heights can be approximated by a first order autoregression model. This means that the distribution of the wave height given the previous wave height is independent of the wave heights prior to the previous wave height. The simulation of successive wave heights can be done directly without simulating the time series of the complete surface elevation. Successive wave periods are modeled with the Nataf transformation by using a two-parameter Weibull distribution and a generalized Gamma distribution as the initial distribution, where the latter is in best agreement with data. Results for the marginal and two-dimensional distributions are compared with existing models. In practical applications, it is often of interest to consider successive wave periods with corresponding wave heights exceeding a certain threshold. Results show that the distribution for successive wave periods when the corresponding wave heights exceed the root-mean-square value of the wave heights can be approximated by a multivariate Gaussian distribution. When comparing the results with data, a long time series is needed in order to obtain enough data cases. Results for three successive wave periods are also presented. The models are compared with field data from the Draupner field and the Japan Sea, and with laboratory data from experiments at HR Wallingford. In addition, data from numerical simulations based on second order wave theory, including both sum and frequency effects, are included.
3

Odhady a testy v modelech panelových dat / Estimators and tests in panel data models

Zvejšková, Magdalena January 2013 (has links)
This work investigates mainly panel data models in which cross-sections can be considered independent. In the first part, we summarize results in the field of pool models and one-way error component models with fixed and random effects. We focus especially on the ways of estimating unknown parameters and on effects significance tests. We also briefly describe two-way error component model issues. In the second part, estimators of first order autoregressive panel data model parameters are derived, for both fixed and random parameters case. The work proves unbiasedness, consistency and asymptotic normality of selected estimators. Using these features, hypothesis tests about corresponding parameters are derived. Application of models is illustrated using real data and simulated data examples. Powered by TCPDF (www.tcpdf.org)
4

Inégalités de déviations, principe de déviations modérées et théorèmes limites pour des processus indexés par un arbre binaire et pour des modèles markoviens / Deviation inequalities, moderate deviations principle and some limit theorems for binary tree-indexed processes and for Markovian models.

Bitseki Penda, Siméon Valère 20 November 2012 (has links)
Le contrôle explicite de la convergence des sommes convenablement normalisées de variables aléatoires, ainsi que l'étude du principe de déviations modérées associé à ces sommes constituent les thèmes centraux de cette thèse. Nous étudions principalement deux types de processus. Premièrement, nous nous intéressons aux processus indexés par un arbre binaire, aléatoire ou non. Ces processus ont été introduits dans la littérature afin d'étudier le mécanisme de la division cellulaire. Au chapitre 2, nous étudions les chaînes de Markov bifurcantes. Ces chaînes peuvent être vues comme une adaptation des chaînes de Markov "usuelles'' dans le cas où l'ensemble des indices à une structure binaire. Sous des hypothèses d'ergodicité géométrique uniforme et non-uniforme d'une chaîne de Markov induite, nous fournissons des inégalités de déviations et un principe de déviations modérées pour les chaînes de Markov bifurcantes. Au chapitre 3, nous nous intéressons aux processus bifurcants autorégressifs d'ordre p (). Ces processus sont une adaptation des processus autorégressifs linéaires d'ordre p dans le cas où l'ensemble des indices à une structure binaire. Nous donnons des inégalités de déviations, ainsi qu'un principe de déviations modérées pour les estimateurs des moindres carrés des paramètres "d'autorégression'' de ce modèle. Au chapitre 4, nous traitons des inégalités de déviations pour des chaînes de Markov bifurcantes sur un arbre de Galton-Watson. Ces chaînes sont une généralisation de la notion de chaînes de Markov bifurcantes au cas où l'ensemble des indices est un arbre de Galton-Watson binaire. Elles permettent dans le cas de la division cellulaire de prendre en compte la mort des cellules. Les hypothèses principales que nous faisons dans ce chapitre sont : l'ergodicité géométrique uniforme d'une chaîne de Markov induite et la non-extinction du processus de Galton-Watson associé. Au chapitre 5, nous nous intéressons aux modèles autorégressifs linéaires d'ordre 1 ayant des résidus corrélés. Plus particulièrement, nous nous concentrons sur la statistique de Durbin-Watson. La statistique de Durbin-Watson est à la base des tests de Durbin-Watson, qui permettent de détecter l'autocorrélation résiduelle dans des modèles autorégressifs d'ordre 1. Nous fournissons un principe de déviations modérées pour cette statistique. Les preuves du principe de déviations modérées des chapitres 2, 3 et 4 reposent essentiellement sur le principe de déviations modérées des martingales. Les inégalités de déviations sont établies principalement grâce à l'inégalité d'Azuma-Bennet-Hoeffding et l'utilisation de la structure binaire des processus. Le chapitre 5 est né de l'importance qu'a l'ergodicité explicite des chaînes de Markov au chapitre 3. L'ergodicité géométrique explicite des processus de Markov à temps discret et continu ayant été très bien étudiée dans la littérature, nous nous sommes penchés sur l'ergodicité sous-exponentielle des processus de Markov à temps continu. Nous fournissons alors des taux explicites pour la convergence sous exponentielle d'un processus de Markov à temps continu vers sa mesure de probabilité d'équilibre. Les hypothèses principales que nous utilisons sont : l'existence d'une fonction de Lyapunov et d'une condition de minoration. Les preuves reposent en grande partie sur la construction du couplage et le contrôle explicite de la queue du temps de couplage. / The explicit control of the convergence of properly normalized sums of random variables, as well as the study of moderate deviation principle associated with these sums constitute the main subjects of this thesis. We mostly study two sort of processes. First, we are interested in processes labelled by binary tree, random or not. These processes have been introduced in the literature in order to study mechanism of the cell division. In Chapter 2, we study bifurcating Markov chains. These chains may be seen as an adaptation of "usual'' Markov chains in case the index set has a binary structure. Under uniform and non-uniform geometric ergodicity assumptions of an embedded Markov chain, we provide deviation inequalities and a moderate deviation principle for the bifurcating Markov chains. In chapter 3, we are interested in p-order bifurcating autoregressive processes (). These processes are an adaptation of $p$-order linear autoregressive processes in case the index set has a binary structure. We provide deviation inequalities, as well as an moderate deviation principle for the least squares estimators of autoregressive parameters of this model. In Chapter 4, we dealt with deviation deviation inequalities for bifurcating Markov chains on Galton-Watson tree. These chains are a generalization of the notion of bifurcating Markov chains in case the index set is a binary Galton-Watson tree. They allow, in case of cell division, to take into account cell's death. The main hypothesis that we do in this chapter are : uniform geometric ergodicity of an embedded Markov chain and the non-extinction of the associated Galton-Watson process. In Chapter 5, we are interested in first-order linear autoregressive models with correlated errors. More specifically, we focus on the Durbin-Watson statistic. The Durbin-Watson statistic is at the base of Durbin-Watson tests, which allow to detect serial correlation in the first-order autoregressive models. We provide a moderate deviation principle for this statistic. The proofs of moderate deviation principle of Chapter 2, 3 and 4 are essentially based on moderate deviation for martingales. To establish deviation inequalities, we use most the Azuma-Bennet-Hoeffding inequality and the binary structure of processes. Chapter 6 was born from the importance that explicit ergodicity of Markov chains has in Chapter 2. Since explicit geometric ergodicity of discrete and continuous time Markov processes has been well studied in the literature, we focused on the sub-exponential ergodicity of continuous time Markov Processes. We thus provide explicit rates for the sub-exponential convergence of a continuous time Markov process to its stationary distribution. The main hypothesis that we use are : existence of a Lyapunov fonction and of a minorization condition. The proofs are largely based on the coupling construction and the explicit control of the tail of the coupling time.

Page generated in 0.1 seconds