• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Lefschetz fixed point formula for elliptic quasicomplexes

Wallenta, Daniel January 2013 (has links)
In a recent paper with N. Tarkhanov, the Lefschetz number for endomorphisms (modulo trace class operators) of sequences of trace class curvature was introduced. We show that this is a well defined, canonical extension of the classical Lefschetz number and establish the homotopy invariance of this number. Moreover, we apply the results to show that the Lefschetz fixed point formula holds for geometric quasiendomorphisms of elliptic quasicomplexes.
2

A Lefschetz fixed point theorem for manifolds with conical singularities

Nazaikinskii, Vladimir, Schulze, Bert-Wolfgang, Sternin, Boris, Shatalov, Victor January 1997 (has links)
We establish an Atiyah-Bott-Lefschetz formula for elliptic operators on manifolds with conical singular points.
3

A semiclassical quantization on manifolds with singularities and the Lefschetz Formula for Elliptic Operators

Schulze, Bert-Wolfgang, Nazaikinskii, Vladimir, Sternin, Boris January 1998 (has links)
For general endomorphisms of elliptic complexes on manifolds with conical singularities, the semiclassical asymptotics of the Atiyah-Bott-Lefschetz number is calculated in terms of fixed points of the corresponding canonical transformation of the symplectic space.
4

Le théorème de concentration et la formule des points fixes de Lefschetz en géométrie d’Arakelov / Concentration theorem and fixed point formula of Lefschetz type in Arakelov geometry

Tang, Shun 18 February 2011 (has links)
Dans les années quatre-vingts dix du siècle dernier, R. W. Thomason a démontréun théorème de concentration pour la K-théorie équivariante algébrique sur lesschémas munis d’une action d’un groupe algébrique G diagonalisable. Comme d’habitude,un tel théorème entraîne une formule des points fixes de type Lefschetz qui permetde calculer la caractéristique d’Euler-Poincaré équivariante d’un G-faisceau cohérent surun G-schéma propre en termes d’une caractéristique sur le sous-schéma des points fixes.Le but de cette thèse est de généraliser les résultats de R.W. Thomason dans le contextede la géométrie d’Arakelov. Dans ce travail, nous considérons les schémas arithmétiquesau sens de Gillet-Soulé et nous tout d’abord démontrons un analogue arithmétiquedu théorème de concentration pour les schémas arithmétiques munis d’une action duschéma en groupe diagonalisable associé à Z/nZ. La démonstration résulte du théorèmede concentration algébrique joint à des arguments analytiques. Dans le dernier chapitre,nous formulons et démontrons deux types de formules de Lefschetz arithmétiques. Cesdeux formules donnent une réponse positive à deux conjectures énoncées par K. Köhler,V. Maillot et D. Rössler. / In the nineties of the last century, R. W. Thomason proved a concentrationtheorem for the algebraic equivariant K-theory on the schemes which are endowed withan action of a diagonalisable group scheme G. As usual, such a concentration theoreminduces a fixed point formula of Lefschetz type which can be used to calculate theequivariant Euler-Poincaré characteristic of a coherent G-sheaf on a proper G-schemein terms of a characteristic on the fixed point subscheme. It is the aim of this thesis togeneralize R. W. Thomason’s results to the context of Arakelov geometry. In this work,we consider the arithmetic schemes in the sense of Gillet-Soulé and we first prove anarithmetic analogue of the concentration theorem for the arithmetic schemes endowedwith an action of the diagonalisable group scheme associated to Z/nZ. The proof is acombination of the algebraic concentration theorem and some analytic arguments. Inthe last chapter, we formulate and prove two kinds of arithmetic Lefschetz formulae.These two formulae give a positive answer to two conjectures made by K. Köhler, V.Maillot and D. Rössler.

Page generated in 0.0883 seconds