Spelling suggestions: "subject:"mixed target""
1 |
A measurement of the beauty cross section in #pi#'--nucleon interactions at 26GeV centre of mass energyBatten, Jeremy Connock January 1996 (has links)
No description available.
|
2 |
Searching for hidden sector dark matter with fixed target neutrino experimentsdeNiverville, Patrick 30 August 2016 (has links)
We study the sensitivity of fixed target neutrino experiments (LSND, T2K, CENNS, and COHERENT) and proton beam dumps (MiniBooNE off-target, and SHiP) to sub-GeV dark matter. In order to reproduce the observed thermal relic abundance, these states are coupled to the Standard Model via new, low mass mediators in the form of a kinetically mixed U(1)0 vector mediator or a vector mediator gauging baryon number. We present a model for the production of low mass dark matter from proton-nucleon collisions in fixed targets. Sensitivity projections are made using signals from elastic electron- and nucleon-dark matter scattering, as well as coherent nuclear-dark matter scattering and dark matter induced inelastic π
0 production. A fixed target Monte Carlo code has been developed for this analysis, and documentation is included. We find that analyses using current and future proton fixed target experiments are capable of placing new limits on the hidden sector dark matter parameter space for dark matter masses of up to 500\,MeV and mediator masses as large as a few GeV. / Graduate
|
3 |
Observing a light dark matter beam with neutrino experimentsDeNiverville, Patrick 18 August 2011 (has links)
We consider the sensitivity of high luminosity neutrino experiments to light stable states, as arise in scenarios of MeV-scale dark matter. To ensure the correct thermal relic abundance, such states must annihilate to the Standard model via light mediators, providing a portal for access to the dark matter state in colliders or fixed targets. This framework implies that neutrino beams produced at a fixed target will also carry an additional “dark matter beam”, which can mimic neutrino scattering off electrons or nuclei in the detector. We therefore develop a Monte Carlo code to simulate the production of a dark matter beam at two proton fixed-target facilities with high luminosity, LSND and MiniBooNE, and with this simulation determine the existing limits on light dark matter. We find in particular that MeV-scale dark matter scenarios motivated by an explanation of the galactic 511 keV line are strongly constrained. / Graduate
|
4 |
A Measurement of Lambda-Hyperon Spin Polarization in Au+Au Collisions at sqrt(s_NN)=3 GeV with STARAdams, Joseph Richard January 2021 (has links)
No description available.
|
5 |
J/Ψ Production Via χ<sub>c</sub> Decays in Fixed Target Proton-nucleus CollisionsGoulart, Dickson C. January 2004 (has links)
No description available.
|
6 |
Azimuthal anisotropy in gold-gold collisions at 4.5 GeV center-of-mass energy per nucleon pair using fixed-target mode at the Relativistic Heavy-Ion ColliderWu, Yang 09 July 2019 (has links)
No description available.
|
Page generated in 0.0485 seconds